Единицы измерения с древности до наших дней. Что из себя представляли вавилонские числа

Математика, как наука, обязана своим появлением Древнему Востоку. Нет точных дат ее зарождения, но достоверно известно, что практически каждое отдельно взятое восточное государство имело свою и методы расчета. В данной статье мы обсудим такое явление, как вавилонские числа, рассмотрим археологические артефакты, подтверждающие их существование, и оценим их влияние на дальнейшее развитие науки.

Вступление

Вавилонское царство начало свое существование во II тысячелетии, а пало в 539 году до нашей эры. За этот период данный восточный регион сделал серьезный шаг вперед во многих сферах жизни, уделив особое внимание архитектуре и астрономии. Но для того, чтобы постройки были устойчивыми и долговечными, чтобы наблюдения за небесными светилами можно было записать и проанализировать, требовалась математика. Поэтому на заре зарождения новой цивилизации в Месопотамии появились и числа.

Так как государство строилось на обломках некогда существовавших здесь Шумера и Аккада, также весьма могущественных держав, изобретения и научные достижения предшественников помогли вавилонянам стать развитой и прогрессирующей расой.

Система счисления Вавилонского царства

При первом взгляде на вавилонские числа сразу возникает ассоциация с римскими, так как принцип их записи практически идентичен, и при этом куда более простой. В системе используется всего два знака: прямой клинок, обозначающий единицы, и лежачий клинок, который оценивают в десяток.

Для записи цифр от 1 до 9 используется только первый символ, а для всех последующих показателей применяется та или иная комбинация двух клиньев. Важно отметить, что была шестидесятеричной и делилась на соответствующие разряды, и это неслучайно. Шестеричным делением Вавилон обязан шумерам, а наличием десятка - аккадцам. В дальнейшем вавилонские числа продублированы арабскими, римскими и греческими и стали основой времяисчисления. С тех пор мы делим час на 60 минут, а каждую минуту на 60 секунд.

Трудности в вавилонской математике

Как мы видим на таблице, в Древнем Вавилоне оканчивался на 59, так как система была шестидесятеричной. Но ведь столь развитая цивилизация не могла ограничиваться лишь таким объемом цифр? Совершенно верно. Вавилонская нумерация чисел предполагала огромные показатели, которые сегодня мы называем трех-, четырех- и пятизначными.

Как пример возьмем отрезок от 60 до 120. Для цифры 60 применялся тот же клинок, что и для единицы, только большего размера. После него оставляли большой пробел и далее записывали остальную часть числа. Это со временем стало порождать путаницу, с которой порой не могли разобраться даже сами древние пользователи. Можно только гадать, как ломали мозг эксперты, которые расшифровывали подобные артефакты. Кроме того, вавилоняне не имели нуля, а это значительно упростило бы запись сложных чисел.

От путаницы к порядку

Чтобы узнать вавилонские числа в ряде других систем исчисления, достаточно запомнить два знака. Чтобы правильно прочитать их и определить значение, необходимо ознакомиться с принципом позиционности. Для нас в этом нет ничего сложного, так как в современном мире существует единая позиционная система. Суть ее заключается в том, что место той или иной цифры влияет на значимость числа. Согласитесь, если мы меняем местами 1 и 7 в числе 17, то результат становится совсем иным. Но для древних народов это не было столь очевидным, так как ранее позиция цифры в числе не имела значения. Вавилоняне первыми в истории человечества поняли, что нет необходимости создавать множество знаков, записывая их хаотично. Достаточно будет двух, значение которых будет зависеть от позиции.

Вавилонские «тетрадки»

В государствах между Тигром и Евфратом не только правители, но и простые люди были весьма образованными, но для полной гармонии им не хватало одного элемента - бумаги. В Египте вместо нее использовали папирус, на котором рисовали древние иероглифы и значки, а вавилонская запись чисел и букв-картинок велась на глиняных табличках.

Такая техника называется клинописью, и суть ее заключается в том, что пока глина мягкая, заточенным деревянным клинком на ней выводятся необходимые символы, которые впоследствии застывают. Таблички были различной величины, толщины и качества. В зависимости от этих показателей на них записывали законы и указы, научные труды, или же рассказы простых людей, их наблюдения и случаи из жизни.

История и наука

В наши дни прослеживается четкое разделение профессий на технические, подразумевающие знание математики, физики и прочих и гуманитарные, где главную роль играют языки, литература, история и философия. Когда существовали и развивались древние цивилизации, все эти отрасли не просто тесно переплетались между собой, но и формировали единое целое, что позволяло людям получать новые знания. Выше мы уже затрагивали такую тему, как история математики, и хотелось бы раскрыть еще пару моментов.

Именно потому, что Восточному Древнему миру выпала честь быть колыбелью мировой цивилизации, он был вынужден просчитать буквально все. Достаточно рано там появилась экономика, которая строилась на таких элементах, как числовой ряд и операции с цифрами. Велись подсчеты зерна и круп, измерялись площади полей, просчитывались массы и параметры построек. Активно развивалась также астрономия. Для дальнейшего продвижения работ в этой области были разработаны первые формулы, по которым высчитывались расстояния до видимых звезд и планет. Некоторые из них ученые до сих пор используют в неизменном формате.

Сегодня мы говорим, что математика - основа физики, химии и астрономии, но на самом деле она возникла на фундаменте данных уже существующих наук, так как была необходимостью.

Наука начинается с тех пор как начинают измерять.
Д.И. Менделеев

С давних пор люди сталкивались с необходимостью определять расстояния, длины предметов, время, площади, объемы и т. д.

Измерения нужны были и в строительстве, и в торговле, и в астрономии, фактически в любой сфере жизни. Очень большая точность измерений нужна была при строительстве египетских пирамид.

Значение измерений возрастало по мере развития общества и, в частности, по мере развития науки. А чтобы измерять, необходимо было придумать единицы различных физических величин. Вспомним, как написано в учебнике: “Измерить какую-нибудь величину – это значит сравнить ее с однородной величиной, принятой за единицу этой величины”.

Целью моей работы было выяснить: какие существовали и существуют сейчас единицы длины и массы, каково их происхождение?

Вершок, локоть и другие единицы...

Измеряй все доступное измерению и делай не доступное измерению доступным”.
Г.Галилей

Самыми древними единицами были субъективные единицы. Так, например, моряки измеряли путь трубками, т. е. расстоянием, которое проходит судно за время, пока моряк выкурит трубку. В Испании похожей единицей была сигара, в Японии – лошадиный башмак, т. е. путь, который проходила лошадь, пока не износится привязанная к ее копытам соломенная подошва, заменявшая подкову.

В программе Олимпийских игр Древней Эллады был бег на стадию. Установлено, что греческая стадия (или стадий) это длина стадиона в Олимпии – 192,27 м. Стадий равняется расстоянию, которое проходит человек спокойным шагом за время от появления первого луча солнца, при его восходе, до момента, когда диск солнца целиком окажется над горизонтом. Это время приблизительно равно двум минутам...

Стадий, как единица измерения расстояний, был и у римлян (185 см), и у вавилонян (около 195 см), и у египтян (195 см).

В Сибири в стародавние времена употреблялась мера расстояний – бука. Это расстояние, на котором человек перестает видеть раздельно рога быка.

У многих народов для определения расстояния использовалась единица длины стрела – дальность полета стрелы. Наши выражения “не подпускать на ружейный выстрел”, позднее “на пушечный выстрел” – напоминают о подобных единицах длины.

Древние римляне расстояния измеряли шагами или двойными шагами (шаг левой ногой, шаг правой). Тысяча двойных шагов составляла милю (лат. “милле” – тысяча).

Длину веревки или ткани неудобно измерять шагами или стадиями. Для этого оказались пригодными встречающиеся у многих народов единицы, отождествляемые с названиями частей человеческого тела. Локоть – расстояние от конца пальцев до локтевого сустава.

Мерой длины для тканей, веревок и т.п. наматывающихся материалов у многих народов был двойной локоть. Этой мерой мы и сейчас пользуемся для приблизительной оценки длины...

На Руси долгое время в качестве единицы длины использовали аршин (примерно 71 см). Эта мера возникла при торговле с восточными странами (перс, “арш” – локоть). Многочисленные выражения: “Словно аршин проглотил”, “Мерить на свой аршин” и другие – свидетельствуют о ее распространении.

Для измерения меньших длин применяли пядь – расстояние между концами расставленных большого и указательного пальцев.

Пядь или, как ее еще называли, четверть (18 см) составляла 1 / 4 аршина, а 1/ 16 аршина равнялся вершок (4,4 см).

Очень распространенной единицей длины была сажень. Впервые упоминание о ней встречается в XI в. С 1554 г. сажень устанавливают равной 3 аршинам (2,13 м) и она получает название царской (или орленой, печатной) в отличие от произвольных – маховой и косой. Маховая сажень – размах рук – равна примерно 2,5 аршинам. Рыбак, который показывает, какую большую рыбу он упустил, демонстрирует нам маховую.

Косая сажень – расстояние от конца вытянутой вверх правой руки до носка левой ноги, она примерно равна 3,25 аршинам.

Вспомним, как в сказках о великанах: “Косая сажень в плечах”. Удивительно совпадение древнеримской меры длины - "архитектурной трости" и древнерусской косой сажени: 248 см. Имеется в виду сажень "с ноги на руку косая, от земли и до земли". Эту сажень определяли длиной веревки, один конец которой прижимался ногой к земле, а другой перекидывался через согнутую в локте руку стоящего человека и опускался снова до земли.

При сложении упомянутой выше косой сажени вчетверо получаем "литовский локоть" (62 см).

В странах Западной Европы издавна применяли в качестве единиц дюйм (2,54 см) –длина сустава большого пальца (от голл. “дюйм” – большой палец) и фут (30 см) – средняя длина ступни человека (от англ. “фут” – ступня).

Рис. 6 Рис. 7

Локоть, вершок, пядь, сажень, дюйм, фут и т. д. очень удобны при измерениях, так как они всегда “под руками”. Но единицы длины, соответствующие частям человеческого тела, обладают большим недостатком: у различных людей пальцы, ступни и т. д. имеют разную длину. Чтобы избавиться от произвола, в XIV в. субъективные единицы начинают заменять набором объективных единиц. Так, например, в 1324 г. в Англии был установлен законный дюйм, равный длине трех приставленных друг к другу ячменных зерен, вытянутых из средней части колоса. Фут определили как среднюю длину ступни шестнадцати человек, выходящих из церкви, т. е. обмером случайных людей стремились получить более постоянное значение единицы – среднюю длину ступни.

Какую величину мы определяем, взвешивая тело на рычажных весах?

Какой народ и когда изобрел рычажные весы – неизвестно. Возможно, что это было сделано многими народами независимо друг от друга, а простота использования послужила причиной их широкого распространения.

Рис. 9

При взвешивании на рычажных весах на одну чашку кладут взвешиваемое тело, на другую – гири. Гири подбирают так, чтобы установить равновесие. При этом уравновешиваются массы взвешиваемого тела и гирь. Если уравновешенные весы перенести, например, на Луну, где вес тела меньше, чем на Земле, в 6 раз, равновесие не нарушится, так как вес и тела, и гирь на Луне уменьшился в одинаковое число раз, а масса осталась прежней.

Следовательно, взвешивая тело на рычажных весах, мы определяем его массу, а не вес.

Единицы массы, как и единицы длины, сначала устанавливались по природным образцам. Чаще всего по массе какого-нибудь семени. Так, например, массу драгоценных камней определяли и до сих пор определяют в каратах (0,2 г) – это масса семени одного из видов бобов.

Позднее за единицу массы стали принимать массу воды, наполняющей сосуд определенной вместимости. Например, в Древнем Вавилоне за единицу массы принимали талант – массу воды, наполняющей такой сосуд, из которого вода равномерно вытекает через отверстие определенного размера в течение одного часа.

По массе зерен или воды изготовляли металлические гири разной массы. Ими пользовались при взвешивании.

Гири, служившие эталоном (образцом), хранились в храмах или правительственных учреждениях.

На Руси древнейшей единицей массы была гривна (409,5 г). Существует предположение, что эта единица ввезена к нам с Востока. Впоследствии она получила название фунта. Для определения больших масс использовался пуд (16,38 кг), а малых – золотник (12,8 г).

В 1791 г. во Франции было принято решение создать десятичную метрическую систему мер. Основными величинами в этой системе были выбраны длина и масса.

Комиссия, в которую входили крупнейшие французские ученые, предложила принять за единицу длины 1/40000000 часть длины земного меридиана, проходящего через Париж. Измерить длину меридиана было поручено астрономам Мешену и Деламберу. Работа продолжалась шесть лет. Ученые измерили часть длины меридиана, расположенную между городами Дюнкерком и Барселоной, а затем вычислили полную длину четверти меридиана от полюса до экватора.

Рис. 11

На основании их данных из платины был изготовлен эталон новой единицы. Эту единицу назвали метром – от греческого слова “метрон”, что значит “мера”.

Рис. 12

За единицу массы была принята масса одного кубического дециметра дистиллированной воды при температуре ее наибольшей плотности 4°С, определяемая взвешиванием в вакууме. Был изготовлен эталон этой единицы, названной килограммом, в виде платинового цилиндра

В 1869 г. Петербургская академия наук обратилась к научным учреждениям всего мира с призывом сделать предложенную французскими учеными десятичную метрическую систему мер международной. В этом обращении говорилось и о том, что “достижения науки привели к необходимости отказаться от прежнего определения метра как 1/40000000 доли четверти длины парижского меридиана, так как позднейшие более точные измерения меридиана давали другие результаты”. Кроме того, стало известно, что длина меридиана со временем меняется. Но так как немыслимо было после каждого измерения меридиана менять длину метра, то Петербургская академия наук предложила принять метр, хранившийся во французском архиве (архивный метр), за прототип – первый образец и изготовить с него возможно точные и устойчивые копии для разных стран, сделав этим метрическую систему мер международной.

Когда же была введена метрическая система мер в нашей стране? Передовые русские ученые, много сделавшие для того, чтобы метрическая система мер стала международной, не смогли преодолеть сопротивления царского правительства введению метрической системы мер в нашей стране. Удалось добиться только того, что в 1899 г. был принят закон, подготовленный Д. И. Менделеевым, по которому наравне с российскими мерами “дозволялось применять в России международный метр и килограмм”, а также кратные им единицы – грамм, сантиметр и др.

Вопрос об использовании метрической системы мер в России был окончательно решен после Великой Октябрьской социалистической революции. 14 сентября 1918 г. Советом Народных Комиссаров РСФСР было издано постановление, в котором говорилось: “Положить в основу всех измерений международную метрическую систему мер и весов с десятичными подразделениями и производными”.

Заключение

По подсчету академика Б. С. Якоби (сторонника превращения метрической системы в международную), от замены прежней системы мер на метрическую преподавание арифметики в школе выиграло третью часть времени, отводившегося на этот предмет. Соответственно значительно упростились расчеты в промышленности и торговле.

Вывод: такую длинную историю прошли длина и масса, пока не стали измеряться в метрах и килограммах соответственно.

Что имеем сейчас:

Единицы СИ

Размерности основных величин в СИ

Базовые единицы СИ

Определения базовых единиц

  1. Метр равен расстоянию, которое проходит плоская электромагнитная волна в вакууме за 1/299792458 долю секунды.
  2. Килограмм равен массе международного прототипа килограмма.
  3. Секунда равна 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия 133 Cs.
  4. Ампер равен силе постоянного тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м друг от друга, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2·10 –7 Н.
  5. Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.
  6. Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде 12 C массой 0,012 кг.
  7. Кандела равна силе света в заданном направлении от источника, испускающего монохроматическое излучение частотой 540·10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Использованная литература:

  1. С.А.Шабалин. Измерения для всех.
  2. Энциклопедия Кирилла и Мефодия.
  3. А.Г.Чертов. Физические величины.
  4. И.Г.Кириллова. Книга для чтения по физике.
одной из единиц длины, применяемых в астрономии, является святой год. один световой год равняется расстоянию, которое проходит света в вакууме за один

год. сколько метров составляет световой год, если скорость света в вакууме приблизительно равна 30000 км/с?

При решении каких из приведенных задач изучаемые тела можно принять за материальные точки: - рассчитать расстояние между Землей и Луной; - рассчитать

расстояние, которое проедет автомобиль за 2 ч; - рассчитать скорость вращения вала электродвигателя; - рассчитать время обгона автомобилем колонны грузовых автомобилей; - рассчитать время движения спортсмена, пробегающего дистанцию 400 м?

Помогите пожалуйста) что знаете, хотя бы некоторые)

Часть А
1. Механическим движением называют
a. изменение положения тела с течением времени
b. изменение положения тела с течением времени относительно других тел
c. беспорядочное движение молекул, из которых состоит тело

2. Если человек стоит на плывучем по реке плоту, то он движется относительно
a. плота
b. дома на берегу реки
c. воды

3. Путь - это
a. длина траектории
b. линия, по которой движется тело
c. наикратчайшее расстояние между начальным и конечным пунктами движения

4. Движение называется равномерным, если
a. за любые равные промежутки времени тело проходит одинаковые пути
b. за равные промежутки времени тело проходит одинаковые пути
c. за любые промежутки времени тело проходит одинаковые пути

5. Чтобы определить среднюю скорость тела при неравномерном движении, надо
a. всё время движения умножить на пройденный путь
b. все время движения поделить на весь путь
c. весь пройденный путь поделить на все время движения

6. Формула для нахождения скорости равномерного движения имеет вид:
a. υ = St
b. υ = S/t
c. S = υt
d. t = S/υ

7. Основной единицей пути в Международной системе единиц СИ является
a. метр (м)
b. километр (км)
c. сантиметр (см)
d. дециметр (дм)
8. В одном метре (м) содержится
a. 1000см
b. 100см
c. 10см
d. 100дм

Часть В
1. Скорость скворца равна примерно 20 м/с, сколько это в км/ч?
2. В течение 30 с поезд двигался равномерно со скоростью 72 км/ч. Какой путь прошел поезд за это время?
Часть С
1. Какова средняя скорость страуса, если первые 30 м он пробежал за 2 с, а следующие 70 м за 0,05 мин?
2. Автомобиль первую часть пути (30 км) прошёл со средней скоростью 15 м/с. Остальную часть пути (40 км) он прошел за 1 ч. С какой средней скоростью двигался автомобиль на всем пути?
3. Рассмотрите графике движения тела и ответьте на вопросы:
-чему равна скорость движения тела;
-каков путь, пройденный телом за 8 секунд;

«Древний Египет 5 класс» - Древние египтяне верили, что людьми и природой управляют… Боги и жрецы. Построены в качестве гробниц для фараонов Древнего Египта. Книга из папируса, свернутая в трубку… Тесты. Люди строили для богов… Письменность в Египте… 5 класс Повторительно-обобщающий урок «Страна большого Хапи». Письменность. Задание на повторение Найдите ошибки.

«Древняя письменность» - Название «глаголица» образовано от глаголъ – «слово», «речь». Но когда такое наконец произошло, новый способ продемонстрировал несомненные преимущества. Второй способ письменности. Рождение славянской письменности... Глаголица хорошо отвечала фонемному составу старославянского языка. Финикийский. Становление письменности - очень непростой процесс, длившийся тысячелетия.

«Древний Вавилон» - Древний Вавилон. Конституция – основа всего законодательства страны. Вавилонская башня. Висячие сады Семирамиды. Законы царя Хаммурапи стали первыми письменными законами. Висячие сады Семирамиды – одно из Семи чудес света. Вавилонский царь обладал неограниченной властью. Хаммурапи – вавилонский царь правивший с 1792 по 1750 до н.э. Сколько лет правил Хаммурапи?

«Древний город» - Разрушение города. Тигеш был довольно большим городом. А по Волге можно и в Багдад, и в Скандинавию. Через века в современность. Археологические раскопки. А после рва - третья крепостная стена. Если так, город жил, получается, до тридцатых годов тринадцатого века. Тигеш. Там теперь пасется скот. Перед каждой стеной был вырыт глубокий ров, наполненный водой.

«Вавилон» - Однако запись необходимых 60 цифр была своеобразной. «…Построен Вавилон вот так… Официальным названием государства касситов было Кардуниаш. Висячие сады Семирамиды - одно из Семи чудес света. Ступени соединялись лестницами, по краю стены шёл ведущий к храму пандус. Вавилонская математика. Вавилонская Башня.

«Развитие Древнего Рима» - Легендарное основание Рима. Республиканский этап. Царский этап. Волчица вскармливает Ромула и Рема. Древнеримский бог войны Марс и Рея. Сильное влияние на становление древнеримской цивилизации оказали культуры этрусков, латинов и древних греков. Ранняя Республика. Затем братьев подобрал царский пастух Фаустул.

Из более 500 тыс. глиняных табличек, найденных археологами при раскопках в Древней Месопотамии, около 400 содержат математические сведения. Большинство из них расшифрованы и позволяют составить довольно ясное представление о поразительных алгебраических и геометрических достижениях вавилонских учёных.

О времени и месте рождения математики мнения разнятся. Многочисленные исследователи этого вопроса приписывают создание её различным народам и приурочивают к разным эпохам. Единой точки зрения на этот счёт не было ещё у древних греков, среди которых особенно была распространена версия, что геометрию придумали египтяне, а арифметику — финикийские купцы, которые нуждались в подобных знаниях для торговых расчётов. Геродот в «Истории» и Страбон в «Географии» отдавали приоритет финикийцам. Платон и Диоген Лаэрций родиной и арифметики, и геометрии считали Египет. Таково же и мнение Аристотеля, полагавшего, что математика зародилась благодаря наличию досуга у тамошних жрецов.

Это замечание следует за пассажем о том, что в каждой цивилизации сначала рождаются практические ремёсла, затем искусства, служащие удовольствию, и лишь затем науки, направленные на познание. Евдем, ученик Аристотеля, как и большинство его предшественников, также считал родиной геометрии Египет, а причиной её появления — практические потребности землемерия. В своём совершенствовании геометрия проходит, по Евдему, три этапа: зарождение практических навыков землемерия, появление практически ориентированной прикладной дисциплины и превращение её в теоретическую науку. Судя по всему, два первых этапа Евдем относил к Египту, а третий — к греческой математике. Правда, он всё же признавал, что теория вычисления площадей возникла из решения квадратных уравнений, имевших вавилонское происхождение.

Небольшие глиняные бляшки, найденные в Иране, предположительно использовались для записи мер зерна 8 тыс. до н.э. Норвежский институт палеографии и истории,
Осло.

У историка Иосифа Флавия («Древняя Иудея», кн. 1, гл. 8) своё мнение. Он хоть и называет египтян первыми, но уверен, что арифметике и астрономии их обучил праотец евреев Авраам, скрывшийся в Египет во время голода, постигшего Ханаанскую землю. Что ж, египетское влияние в Греции было достаточно сильным, чтобы навязать грекам подобное мнение, которое с их лёгкой руки имеет хождение в исторической литературе до сих пор. Хорошо сохранившиеся глиняные таблички, покрытые клинописными текстами, найденные в Месопотамии и датируемые от 2000 г. до н.э. и до 300 г. н.э., свидетельствуют как о несколько ином положении дел, так и о том, что представляла собой математика в древнем Вавилоне. Это был довольно сложный сплав арифметики, алгебры, геометрии и даже начатков тригонометрии.

Математике учили в писцовых школах, и каждый выпускник обладал довольно серьёзным для того времени объёмом знаний. Видимо, именно об этом говорит Ашшурбанипал, царь Ассирии в 7 в. до н.э., в одной из своих надписей, сообщая, что научился находить «сложные обратные дроби и умножать». Прибегать к вычислениям, жизнь заставляла вавилонян на каждом шагу. Арифметика и нехитрая алгебра нужны были в ведении хозяйства, при обмене денег и расчётах за товары, вычислении простых и сложных процентов, налогов и доли урожая, сдаваемой в пользу государства, храма или землевладельца. Математических расчётов, причём довольно сложных, требовали масштабные архитектурные проекты, инженерные работы при строительстве ирригационной системы, баллистика, астрономия, астрология.

Важной задачей математики было определение сроков сельскохозяйственных работ, религиозных праздников, другие календарные нужды. Сколь высоки в древних городах-государствах междуречья Тигра и Евфрата были достижения в том, что греки позже назовут так удивительно точно mathema («познание»), позволяют судить расшифровки месопотамских глиняных клинописей. К слову, у греков термин mathema поначалу обозначал перечень четырёх наук: арифметику, геометрию, астрономию и гармонику, собственно математику он начал обозначать много позже. В Месопотамии археологи уже нашли и продолжают находить клинописные таблички с записями математического характера частью на аккадском, частью на шумерском языках, а также справочные математические таблицы. Последние сильно облегчали вычисления, которые приходилось производить повседневно, поэтому в ряде расшифрованных текстов довольно часто содержится исчисление процентов.

Сохранились названия арифметических действий более раннего, шумерского периода месопотамской истории. Так, операция сложения называлась «накопление» или «прибавление», при вычитании употреблялся глагол «вырывать», а термин для умножения означал «скушать». Интересно, что в Вавилоне пользовались более обширной таблицей умножения — от 1 до 180 000, чем та, которую пришлось учить в школе нам, т.е. рассчитанная на числа от 1 до 100. В Древней Месопотамии были созданы единообразные правила арифметических действий не только с целыми числами, но и с дробями, в искусстве оперирования которыми вавилоняне значительно превосходили египтян. В Египте, например, операции с дробями долгое время продолжали оставаться на примитивном уровне, так как они знали лишь аликвотные дроби (т.е. дроби с числителем, равным 1). Со времён шумеров в Месопотамии основной счётной единицей во всех хозяйственных делах было число 60, хотя была известна и десятеричная система счисления, которая была в ходу у аккадцев.

Самая знаменитая из математических табличек Старовавилонского периода, хранящаяся в библиотеке Колумбийского университета (США). Содержит перечень прямоугольных треугольников с рациональными сторонами, то есть троек пифагоровых чисел x2 + y2 = z2 и свидетельствует о том, что теорема Пифагора была известна вавилонянам не менее чем за тысячу лет до рождения её автора. 1900 — 1600 гг. до н.э.

Вавилонские математики широко пользовались шестидесятеричной позиционной(!) системой счёта. На её основе и были составлены различные вычислительные таблицы. Кроме таблиц умножения и таблиц обратных величин, с помощью которых производилось деление, существовали таблицы квадратных корней и кубических чисел. Клинописные тексты, посвящённые решению алгебраических и геометрических задач, свидетельствуют о том, что вавилонские математики умели решать некоторые специальные задачи, включавшие до десяти уравнений с десятью неизвестными, а также отдельные разновидности кубических уравнений и уравнений четвёртой степени. Квадратные уравнения вначале служили, в основном, сугубо практическим целям — измерению площадей и объёмов, что отразилось на терминологии. Например, при решении уравнений с двумя неизвестными, одно называлось «длиной», а другое — «шириной». Произведение неизвестных называли «площадью». Как и сейчас!

В задачах, приводящих к кубическому уравнению, встречалась третья неизвестная величина — «глубина», а произведение трёх неизвестных именовалось «объёмом». В дальнейшем, с развитием алгебраического мышления, неизвестные стали пониматься более абстрактно. Иногда в качестве иллюстрации алгебраических соотношений в Вавилоне использовались геометрические чертежи. Позже, в Древней Греции они стали основным элементом алгебры, тогда как для вавилонян, мысливших, прежде всего, алгебраически, чертежи были лишь средством наглядности, и под терминами «линия» и «площадь» чаще всего понимались безразмерные числа. Потому-то и встречались решения задач, где «площадь» складывалась со «стороной» или отнималась от «объёма» и т.п. Особое значение имело в древности точное измерение полей, садов, строений — ежегодные разливы рек приносили большое количество ила, который покрывал поля и уничтожал межи между ними, и после спада воды землемерам по заказу их владельцев частенько приходилось вновь перемеривать наделы. В клинописных архивах сохранилось немало таких землемерных карт, составленных свыше 4 тыс. лет тому назад.

Первоначально единицы измерения были не очень точными, ведь длину измеряли пальцами, ладонями, локтями, которые у разных людей разные. Получше обстояло дело с большими величинами, для измерения которых пользовались тростником и верёвкой определённых размеров. Но и здесь результаты измерений нередко различались между собой, в зависимости от того, кто мерил и где. Поэтому в разных городах Вавилонии были приняты разные меры длины. Например, в городе Лагаше «локоть» был равен 400 мм, а в Ниппуре и самом Вавилоне — 518 мм. Многие сохранившиеся клинописные материалы представляли собой учебные пособия для вавилонских школьников, в которых приводились решения различных несложных задач, часто встречавшихся в практической жизни. Неясно, правда, решал ли ученик их в уме или делал предварительные вычисления прутиком на земле — на табличках записаны только условия математических задач и их решение.

Геометрические задачи с рисунками трапеций и треугольников и решением теоремы Пифагора. Размеры таблички: 21,0x8,2. 19 в. до н.э. Британский музей

Основную часть курса математики в школе занимало решение арифметических, алгебраических и геометрических задач, при формулировке которых было принято оперировать конкретными предметами, площадями и объёмами. На одной из клинописных табличек сохранилась такая задачка: «За сколько дней можно изготовить кусок ткани определённой длины, если мы знаем, что ежедневно изготовляется столько-то локтей (мера длины) этой ткани?» На другой приведены задачи, связанные со строительными работами. Например, «Сколько земли потребуется для насыпи, размеры которой известны, и сколько грунта должен перетаскать каждый рабочий, если известно их общее число?» или «Сколько глины должен заготовить каждый рабочий для возведения стены определённых размеров?»

Школьник также должен был уметь вычислять коэффициенты, подсчитывать итоги, решать задачи по измерению углов, вычислению площадей и объёмов прямолинейных фигур — это был обычный набор для элементарной геометрии. Интересны сохранившиеся с шумерских времён названия геометрических фигур. Треугольник назывался «клин», трапеция — «лоб быка», круг — «обруч», ёмкость обозначалась термином «вода», объём — «земля, песок», площадь именовалась «поле». Один из клинописных текстов содержит 16 задач с решениями, которые относятся к плотинам, валам, колодцам, водяным часам и земельным работам. Одна задача снабжена чертежом, относящимся к круговому валу, ещё одна рассматривает усечённый конус, определяя его объём умножением высоты на полусумму площадей верхнего и нижнего оснований.

Вавилонские математики решали также планиметрические задачи, используя свойства прямоугольных треугольников, сформулированные Пифагором впоследствии в виде теоремы о равенстве в прямоугольном треугольнике квадрата гипотенузы сумме квадратов катетов. Другими словами, знаменитая теорема Пифагора была известна вавилонянам не менее чем за тысячу лет до Пифагора. Помимо планиметрических задач, решали и стереометрические, связанные с определением объёма различного рода пространств, тел, широко практиковали черчение планов полей, местностей, отдельных зданий, но обычно не в масштабе. Наиболее значительным достижением математики было открытие того факта, что отношение диагонали и стороны квадрата не может быть выражено целым числом или простой дробью. Тем самым в математику было введено понятие иррациональности.

Считается, что открытие одного из важнейших иррациональных чисел — числа π, выражающего отношение длины окружности к её диаметру и равняющееся бесконечной дроби ≈ 3,14..., принадлежит Пифагору. По другой версии, для числа π значение 3,14 впервые предложил Архимед на 300 лет позже, в 3 в. до н.э. Ещё по одной, первым вычислившим его был Омар Хайям, это вообще 11 — 12 в. н.э. Достоверно известно лишь, что греческой буквой π это отношение впервые обозначил в 1706 г. английский математик Уильям Джонс, и лишь после того как в 1737 г. это обозначение позаимствовал швейцарский математик Леонард Эйлер, оно стало общепринятым. Число π — древнейшая математическая загадка, это открытие следует искать также в Древней Месопотамии.

Вавилонские математики прекрасно знали о важнейших иррациональных числах, и решение задачи по вычислению площади круга также можно найти в расшифровках клинописных глиняных табличек математического содержания. Согласно этим данным π принималось равным 3, что, впрочем, было вполне достаточно для практических землемерных целей. Исследователи считают, что шестидесятеричная система была выбрана в Древнем Вавилоне из метрологических соображений: число 60 имеет много делителей. Шестидесятеричная запись целых чисел распространения за пределами Месопотамии не получила, но в Европе вплоть до 17 в. широко применялись и шестидесятеричные дроби, и привычное нам деление окружности на 360 градусов. Час и минуты, делящиеся на 60 частей, также берут начало в Вавилоне.

Замечательна остроумная придумка вавилонян использовать для записи чисел минимальное количество цифровых знаков. Римлянам, например, даже в голову не пришло, что одной и той же цифрой можно обозначить разные величины! Для этого они использовали буквы своего алфавита. В итоге четырёхзначное число, к примеру, 2737 содержало аж одиннадцать букв: MMDCCXXXVII. И хотя и в наше время найдутся экстремалы-математики, которые сумеют разделить в столбик LXXVIII на CLXVI или перемножить CLIX на LXXIV, остаётся только пожалеть тех жителей Вечного города, которым приходилось производить при помощи подобной математической эквилибристики сложные календарные и астрономические расчёты или рассчитывались масштабные архитектурные проекты и различные инженерные объекты.

На использовании букв алфавита была основана и греческая система счисления. Вначале в Греции была принята аттическая система, использовавшая для обозначения единицы вертикальную черту, а для чисел 5, 10, 100, 1000, 10 000 (по существу это была десятичная система) — начальные буквы их греческих названий. Позже, примерно в 3 в. до н.э., получила широкое распространение ионическая система счисления, в которой для обозначения чисел использовались 24 буквы греческого алфавита и три архаические буквы. А чтобы отличить числа от слов, греки над соответствующей буквой ставили горизонтальную черту. В этом смысле вавилонская математическая наука стояла выше позднейших греческой или римской, так как именно ей принадлежит одно из самых выдающихся достижений в развитии систем обозначений чисел — принцип позиционности, согласно которому один и тот же числовой знак (символ) имеет различные значения в зависимости от того места, где он расположен. К слову, уступала вавилонской и современная ей египетская система счисления.

Египтяне пользовались непозиционной десятичной системой, в которой числа от 1 до 9 обозначались соответствующим числом вертикальных чёрточек, а для последовательных степеней числа 10 вводились индивидуальные иероглифические символы. Для малых чисел вавилонская система счисления в основных чертах напоминала египетскую. Одна вертикальная клинообразная черта (в раннешумерских табличках — небольшой полукруг) означала единицу; повторенный нужное число раз этот знак служил для записи чисел меньше десяти; для обозначения числа 10 вавилоняне, как и египтяне, ввели новый символ — широкий клиновидный знак с остриём, направленным влево, напоминающий по форме угловую скобку, (в раннешумерских текстах — небольшой кружок). Повторенный соответствующее число раз, этот знак служил для обозначения чисел 20, 30, 40 и 50. Большинство современных историков считает, что древние научные познания носили чисто эмпирический характер.

В отношении физики, химии, натурфилософии, в основе которых лежали наблюдения, вроде и верно. Но представления о чувственном опыте, как источнике знаний, сталкиваются с неразрешимым вопросом, когда речь идёт о такой абстрактной науке, как оперирующая символами математика. Особенно значительными были достижения вавилонской математической астрономии. Но внезапный ли скачок поднял месопотамских математиков от уровня утилитарной практики до обширных познаний, позволяющих применять математические методы для предвычисления положений Солнца, Луны и планет, затмений и других небесных явлений, или развитие шло постепенно, мы, к сожалению, не знаем. История математических знаний вообще выглядит странновато.

Нам известно, как наши предки учились считать на пальцах рук и ног, делали примитивные числовые записи в виде зарубок на палке, узелков на верёвке или выложенных в ряд камешков. А далее — без всякого переходного звена — вдруг сведения о математических достижениях вавилонян, египтян, китайцев, индусов и других древних учёных, настолько солидных, что их математические методы выдерживали испытание временем вплоть до середины недавно закончившегося II тысячелетия, т. е. на протяжении более чем трёх тысяч лет…

Что скрыто между этими звеньями? Почему древние мудрецы, помимо практического значения, почитали математику как священное знание, а числам и геометрическим фигурам давали имена богов? Только ли за этим стоит трепетное отношение к Знанию, как таковому? Возможно, придёт время, когда археологи найдут ответы на эти вопросы. А пока ждём, не будем забывать, что ещё 700 лет назад сказал оксвордец Томас Брадвардин: «Тот, кто имеет бесстыдство отрицать математику, должен был бы знать с самого начала, что никогда не войдёт во врата мудрости».