«Царь-бомба» и другие знаменитые ядерные взрывы. Поражающие факторы ядерного взрыва и действие

30 октября 1961 года СССР произвёл взрыв самой мощной бомбы в мировой истории: 58-мегатонная водородная бомба («Царь-бомба») была взорвана на полигоне на острове Новая Земля. Никита Хрущёв пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, чтобы не побить все стёкла в Москве.


Взрыв АН602 по классификации был низким воздушным взрывом сверхбольшой мощности. Результаты его впечатляли:

  • Огненный шар взрыва достиг радиуса примерно 4,6 километра. Теоретически он мог бы вырасти до поверхности земли, однако этому воспрепятствовала отражённая ударная волна, подмявшая и отбросившая шар от земли.
  • Световое излучение потенциально могло вызывать ожоги третьей степени на расстоянии до 100 километров.
  • Ионизация атмосферы стала причиной помех радиосвязи даже в сотнях километров от полигона в течение около 40 минут
  • Ощутимая сейсмическая волна, возникшая в результате взрыва, три раза обогнула земной шар.
  • Свидетели почувствовали удар и смогли описать взрыв на расстоянии тысячи километров от его центра.
  • Ядерный гриб взрыва поднялся на высоту 67 километров; диаметр его двухъярусной «шляпки» достиг (у верхнего яруса) 95 километров.
  • Звуковая волна, порождённая взрывом, докатилась до острова Диксон на расстоянии около 800 километров. Однако о каких-либо разрушениях или повреждениях сооружений даже в расположенных гораздо ближе (280 км) к полигону посёлке городского типа Амдерма и посёлке Белушья Губа источники не сообщают.
  • Радиоактивное загрязнение опытного поля радиусом 2-3 км в районе эпицентра составило не более 1 мР/час, испытатели появились на месте эпицентра через 2 часа после взрыва. Радиоактивное загрязнение практически не представляло опасности для участников испытания

Все ядерные взрывы, произведенные странами мира, в одном видео:

Создатель атомной бомбы Роберт Оппенгеймер в день первого испытания своего детища сказал: «Если бы на небе разом взошли сотни тысяч солнц, их свет мог бы сравниться с сиянием, исходившим от Верховного Господа… Я - есть Смерть, великий разрушитель миров, несущий гибель всему живому». Эти слова были цитатой из «Бхагавад Гиты», которую американский физик прочитал в оригинале.


Фотографы из Лукаут Маунтэйн стоят по пояс в пыли, поднятой ударной волной после ядерного взрыва (фото 1953 года).


Название испытания: Umbrella
Дата: 8 июня 1958 года

Мощность: 8 килотонн

Подводный ядерный взрыв был произведён в ходе операции «Hardtack». В качестве мишеней использовались списанные корабли.


Название испытания: Chama (в рамках проекта «Доминик»)
Дата: 18 октября 1962 года
Место: Остров Джонстон
Мощность: 1.59 мегатонн


Название испытания: Oak
Дата: 28 июня 1958 года
Место: Лагуна Эниветок в Тихом океане
Мощность: 8.9 мегатонн


Проект «Апшот-Нотхол», испытание «Энни». Дата: 17 марта 1953 г.; проект: Апшот-Нотхол; испытание: Энни; место: Нотхол, полигон в Неваде, сектор 4; мощность: 16 кт. (Photo: Wikicommons)


Название испытания: Castle Bravo
Дата: 1 марта 1954 года
Место: атолл Бикини
Тип взрыва: на поверхности
Мощность: 15 мегатонн

Взрыв водородной бомбы Castle Bravo был самым мощным взрывом из всех испытаний, когда либо проводимых США. Мощность взрыва оказалась намного больше первоначальных прогнозов в 4-6 мегатонн.


Название испытания: Castle Romeo
Дата: 26 марта 1954 года
Место: на барже в кратере Bravo, атолл Бикини
Тип взрыва: на поверхности
Мощность: 11 мегатонн

Мощность взрыва оказалась в 3 раза больше первоначальных прогнозов. Romeo был первым испытанием, произведенным на барже.


Проект «Доминик», испытание «Ацтек»


Название испытания: Priscilla (в рамках серии испытаний «Plumbbob»)
Дата: 1957 год

Мощность: 37 килотонн


Именно так выглядит процесс высвобождения огромного количества лучистой и тепловой энергии при атомном взрыве в воздухе над пустыней. Тут еще можно разглядеть военную технику, которая через мгновение будет уничтожена ударной волной, запечатленной в виде кроны, окружившей эпицентр взрыва. Видно как ударная волна отразилась от земной поверхности и вот-вот сольется с огненным шаром.

Название испытания: Grable (в рамках операции «Апшот-Нотхол»)
Дата: 25 мая 1953 года
Место: Ядерный полигон в Неваде
Мощность: 15 килотонн


На испытательном полигоне в пустыне Невада фотографами центра Лукаут Маунтэйн в 1953 году была сделана фотография необычного явления (кольцо огня в ядерном грибе после взрыва снаряда из ядерной пушки), природа которого долгое время занимала умы ученых.

Проект «Апшот-Нотхол», испытание «Грабл». В рамках этого испытания был произведен взрыв атомной бомбы мощностью 15 килотонн, запущенной 280-миллиметровой атомной пушкой. Испытание прошло 25 мая 1953 года на полигоне Невады. (Photo: National Nuclear Security Administration / Nevada Site Office)


Грибовидное облако, образованное в результате атомного взрыва испытания «Траки», проводимого в рамках проекта «Доминик».


Проект «Бастер», испытание «Дог».


Проект «Доминик», испытание «Йесо». Испытание: Йесо; дата:10 июня 1962 г.; проект: Доминик; место: 32 км к югу от острова Рождества; тип испытания: B-52, атмосферный, высота – 2,5 м; мощность: 3.0 мт; тип заряда: атомный. (Wikicommons)

Название испытания: YESO
Дата: 10 июня 1962 года
Место: Остров Рождества
Мощность: 3 мегатонны


Испытание «Ликорн» на территории Французской Полинезии. Изображение №1. (Pierre J./French Army)

Название испытания: «Единорог» (фр. Licorne)
Дата: 3 июля 1970 года
Место: атолл во Французской Полинезии
Мощность: 914 килотонн


Испытание «Ликорн» на территории Французской Полинезии. Изображение №2. (Photo: Pierre J./French Army)

Испытание «Ликорн» на территории Французской Полинезии. Изображение №3. (Photo: Pierre J./French Army)


Для получения хороших снимков на испытательных полигонах часто работают целые команды фотографов. На фото: испытательный ядерный взрыв в пустыне Невада. Справа видны ракетные шлейфы, с помощью которых ученые определяют характеристики ударной волны.


Испытание «Ликорн» на территории Французской Полинезии. Изображение №4. (Photo: Pierre J./French Army)


Проект «Кастл», испытание «Ромео». (Photo: zvis.com)


Проект «Хардтэк», испытание «Амбрелла». Испытание: Амбрелла; дата: 8 июня 1958 г.; проект: Хардтэк I; место: лагуна атолла Эниветок; тип испытания: подводный, глубина 45 м; мощность: 8кт; тип заряда: атомный.


Проект «Редвинг», испытание «Семинол». (Photo: Nuclear Weapons Archive)


Испытание «Рия». Атмосферное испытание атомной бомбы на территории Французской Полинезии в августе 1971 года. В рамках этого испытания, которое прошло 14 августа 1971 года, была взорвана термоядерная боеголовка под кодовым названием «Рия», мощностью 1000 кт. Взрыв произошел на территории атолла Муруроа. Этот снимок был сделан с расстояния 60 км от нулевой отметки. Photo: Pierre J.


Грибовидное облако от ядерного взрыва над Хиросимой (слева) и Нагасаки (справа). На заключительной стадии Второй мировой войны, Соединенные Штаты нанесли 2 атомных удара по Хиросиме и Нагасаки. Первый взрыв прогремел 6 августа 1945 года, а второй – 9 августа 1945 года. Это был единственный случай, когда ядерное оружие применялось в военных целях. Согласно приказу президента Трумэна, 6 августа 1945 года американская армия сбросила ядерную бомбу «Малыш» на Хиросиму, а 9 августа последовал ядерный взрыв бомбы «Толстяк», сброшенной на Нагасаки. В течение 2-4 месяцев после ядерных взрывов в Хиросиме погибло от 90 000 до 166 000 человек, а в Нагасаки – от 60 000 до 80 000. (Photo: Wikicommons)


Проект «Апшот-Нотхол». Полигон в Неваде, 17 марта 1953 года. Взрывная волна полностью разрушила Строение №1, расположенное на расстоянии 1,05 км от нулевой отметки. Разница во времени между первым и вторым снимком составляет 21/3 секунды. Камера была помещена в защитный футляр с толщиной стенки 5 см. Единственным источником света в данном случае была ядерная вспышка. (Photo: National Nuclear Security Administration / Nevada Site Office)


Проект «Рэйнджер», 1951 год. Название испытания неизвестно. (Photo: National Nuclear Security Administration / Nevada Site Office)


Испытание «Тринити».

«Тринити» было кодовым названием первого испытания ядерного оружия. Это испытание было проведено армией Соединенных Штатов 16 июля 1945 года, на территории, расположенной приблизительно в 56 км к юго-востоку от Сокорро, штат Нью-Мексико, на ракетном полигоне «Уайт Сэндс». Для испытания использовалась плутониевая бомба имплозивного типа, получившая прозвище «Штучка». После детонации прогремел взрыв мощностью эквивалентной 20 килотоннам тротила. Дата проведения этого испытания считается началом атомной эры. (Photo: Wikicommons)


Название испытания: Mike
Дата: 31 октября 1952 года
Место: Остров Elugelab («Flora»), атолл Эневейта
Мощность: 10.4 мегатонны

Устройство, взорванное при испытании Майка и названное «колбасой», было первой настоящей «водородной» бомбой мегатонного класса. Грибовидное облако достигло высоты 41 км при диаметре 96 км.


Взрыв “MET”, осуществленный в рамках Операции “Типот”. Примечательно, что взрыв “MET” по мощности был сравним с плутониевой бомбой «Толстяк», сброшенной на Нагасаки. 15 апреля 1955 года, 22 кт. (Wikimedia)


Один из самых мощных взрывов термоядерной водородной бомбы на счету США – операция “Кастл Браво”. Мощность заряда составила 10 мегатонн. Взрыв был произведен 1 марта 1954 года на атолле Бикини, Маршалловы Острова. (Wikimedia)


Операция “Кастл Ромео” – один из самых мощных взрывов термоядреной бомбы, произведенных США. Атолл Бикини, 27 марта 1954 года, 11 мегатонн. (Wikimedia)


Взрыв “Бэйкер”, показана белая поверхность воды, потревоженной воздушной ударной волной, и верх полой колонны брызг, образовавшей полусферическое облако Вильсона. На заднем плане – берег атолла Бикини, июль 1946 года. (Wikimedia)



Взрыв американской термоядерной (водородной) бомбы “Майк” мощностью 10,4 мегатонны. 1 ноября, 1952 года. (Wikimedia)


Операция «Парник» (англ. Operation Greenhouse) - пятая серия американских ядерных испытаний и вторая из них за 1951 год. В ходе операции испытывались конструкции ядерных зарядов с использованием термоядерного синтеза для увеличения выхода энергии. Кроме того, исследовалось воздействие взрыва на сооружения, включая жилые здания, корпуса заводов и бункеры. Операция проводилась на Тихоокеанском ядерном полигоне. Все устройства были взорваны на высоких металлических вышках, имитирующих воздушный взрыв. Взрыв “Джордж”, 225 килотонн, 9 мая 1951 года. (Wikimedia)


Грибообразное облако, у которого вместо пылевой ножки водяной столб. Справа на столбе видна прореха: линкор «Арканзас» закрыл собой выброс брызг. Испытание “Бэйкер”, мощностью заряда – 23 килотонны в тротиловом эквиваленте, 25 июля 1946 года. (Wikimedia)


200-метровое облако над территорией Frenchman Flat после взрыва “MET” в рамках операции “Типот”, 15 апреля 1955 года, 22 кт. Этот снаряд имел редкую сердцевину из урана-233. (Wikimedia)


Кратер был сформирован, когда в 100 килотонн взрывной волны были взорваны под 635 футов пустыни 6 июля 1962 года, вытеснив 12 миллионов тонн земли.


Время: 0с. Расстояние: 0м. Инициация взрыва ядерного детонатора.
Время: 0.0000001c. Расстояние: 0м Температура: до 100 млн. °C. Начало и ход ядерных и термоядерных реакций в заряде. Ядерный детонатор своим взрывом создаёт условия для начала термоядерных реакций: зона термоядерного горения проходит ударной волной в веществе заряда со скоростью порядка 5000 км/с (106 - 107 м/с) Около 90% выделяющихся при реакциях нейтронов поглощается веществом бомбы, оставшиеся 10% вылетают наружу.

Время: 10−7c. Расстояние: 0м. До 80% и более энергии реагирующего вещества трансформируется и выделяется в виде мягкого рентгеновского и жёсткого УФ излучения с огромной энергией. Рентгеновское излучение формирует тепловую волну, которая нагревает бомбу, выходит наружу и начинает нагревать окружающий воздух.

Время: < 10−7c. Расстояние: 2м Температура: 30 млн.°C. Окончание реакции, начало разлёта вещества бомбы. Бомба сразу исчезает из виду и на её месте появляется яркая светящаяся сфера (огненный шар), маскирующая разлёт заряда. Скорость роста сферы на первых метрах близка к скорости света. Плотность вещества здесь за 0,01 сек падает до 1% плотности окружающего воздуха; температура за 2,6 сек падает до 7-8 тыс.°C, ~5 секунд удерживается и дальше снижается с подъёмом огненной сферы; давление через 2-3 сек падает до несколько ниже атмосферного.

Время: 1.1х10−7c. Расстояние: 10м Температура: 6 млн.°C. Расширение видимой сферы до ~10 м идёт за счёт свечения ионизованного воздуха под рентгеновским излучением ядерных реакций, а далее посредством радиационной диффузии самого нагретого воздуха. Энергия квантов излучения, покидающих термоядерный заряд такова, что их свободный пробег до захвата частицами воздуха порядка 10 м и вначале сравним с размерами сферы; фотоны быстро обегают всю сферу, усредняя её температуру и со скоростью света вылетают из неё, ионизуя всё новые слои воздуха, отсюда одинаковая температура и околосветовая скорость роста. Далее, от захвата к захвату, фотоны теряют энергию и длина их пробега сокращается, рост сферы замедляется.

Время: 1.4х10−7c. Расстояние: 16м Температура: 4 млн.°C. В целом от 10−7 до 0,08 секунд идёт 1-я фаза свечения сферы с быстрым падением температуры и выходом ~1 % энергии излучения, большей частю в виде УФ-лучей и ярчайшего светового излучения, способных повредить зрение у далёкого наблюдателя без образования ожогов кожи. Освещённость земной поверхности в эти мгновения на расстояниях до десятков километров может быть в сто и более раз больше солнечной.

Время: 1.7х10−7c. Расстояние: 21м Температура: 3 млн.°C. Пары бомбы в виде клубов, плотных сгустков и струй плазмы как поршень сжимают впереди себя воздух и формируют ударную волну внутри сферы - внутренний скачок, отличающийся от обычной ударной волны неадиабатическими, почти изотермическими свойствами и при тех же давлениях в несколько раз большей плотностью: сжимающийся скачком воздух сразу излучает большую часть энергии через пока прозрачный для излучений шар.
На первых десятках метров окружающие предметы перед налётом на них огневой сферы из-за слишком большой её скорости не успевают никак среагировать - даже практически не нагреваются, а оказавшись внутри сферы под потоком излучения испаряются мгновенно.

Температура: 2 млн.°C. Скорость 1000 км/с. С ростом сферы и падением температуры энергия и плотность потока фотонов снижаются и их пробега (порядка метра) уже не хватает для околосветовых скоростей расширения огневого фронта. Нагретый объём воздуха начал расширяться и формируется поток его частиц от центра взрыва. Тепловая волна при неподвижном воздухе на границе сферы замедляется. Расширяющийся нагретый воздух внутри сферы наталкивается на неподвижный у её границы и где-то начиная с 36-37 м появляется волна повышения плотности - будущая внешняя воздушная ударная волна; до этого волна не успевала появиться из-за огромной скорости роста световой сферы.

Время: 0,000001c. Расстояние: 34м Температура: 2 млн.°C. Внутренний скачок и пары бомбы находятся в слое 8-12 м от места взрыва, пик давления до 17 000 МПа на расстоянии 10,5 м, плотность ~ в 4 раза больше плотности воздуха, скорость ~100 км/с. Область горячего воздуха: давление на границе 2.500 МПа, внутри области до 5000 МПа, скорость частиц до 16 км/с. Вещество паров бомбы начинает отставать от внутр. скачка по мере того, как всё больше воздуха в нём вовлекается в движение. Плотные сгустки и струи сохраняют скорость.

Время: 0,000034c. Расстояние: 42м Температура: 1 млн.°C. Условия в эпицентре взрыва первой советской водородной бомбы (400кт на высоте 30 м), при котором образовалась воронка порядка 50 м диаметром и 8 м глубиной. В 15 м от эпицентра или в 5-6 м от основания башни с зарядом располагался железобетонный бункер со стенами толщиной 2 м. для размещения научной аппаратуры сверху укрытый большой насыпью земли толщиной 8 м разрушен.

Температура: 600тыс.°C.С этого момента характер ударной волны перестаёт зависеть от начальных условий ядерного взрыва и приближается к типовому для сильного взрыва в воздухе, т.е. такие параметры волны могли бы наблюдаться при взрыве большой массы обычной взрывчатки.

Время: 0,0036c. Расстояние: 60м Температура: 600тыс.°C. Внутренний скачок, пройдя всю изотермическую сферу, догоняет и сливается с внешним, повышая его плотность и образуя т. н. сильный скачок - единый фронт ударной волны. Плотность вещества в сфере падает до 1/3 атмосферной.

Время: 0,014c. Расстояние: 110м Температура: 400тыс.°C. Аналогичная ударная волна в эпицентре взрыва первой советской атомной бомбы мощностью 22 кт на высоте 30 м сгенерировала сейсмический сдвиг, разрушивший имитацию тоннелей метро с различными типами крепления на глубинах 10 и 20 м 30 м, животные в тоннелях на глубинах 10, 20 и 30 м погибли. На поверхности появилось малозаметное тарелкообразное углубление диаметром около 100 м. Сходные условия были в эпицентре взрыва "Тринити" 21 кт на высоте 30 м, образовалась воронка диаметром 80 м и глубиной 2 м.

Время: 0,004c. Расстояние: 135м
Температура: 300тыс.°C. Максимальная высота воздушного взрыва 1 Мт для образования заметной воронки в земле. Фронт ударной волны искривлён ударами сгустков паров бомбы:

Время: 0,007c. Расстояние: 190м Температура: 200тыс.°C. На гладком и как бы блестящем фронте уд. волны образуются большие волдыри и яркие пятна (сфера как бы кипит). Плотность вещества в изотермической сфере диаметром ~150 м падает ниже 10 % атмосферной.
Немассивные предметы испаряются за несколько метров до прихода огн. сферы («Канатные трюки»); тело человека со стороны взрыва успеет обуглиться, а полностью испаряется уже с приходом ударной волны.

Время: 0,01c. Расстояние: 214м Температура: 200тыс.°C. Аналогичная воздушная ударная волна первой советской атомной бомбы на расстоянии 60 м (52 м от эпицентра) разрушила оголовки стволов, ведущих в имитации тоннелей метро под эпицентром (см. выше). Каждый оголовок представлял собой мощный железобетонный каземат, укрытый небольшой грунтовой насыпью. Обломки оголовков обвалились в стволы, последние затем раздавлены сейсмической волной.

Время: 0,015c. Расстояние: 250м Температура: 170тыс.°C. Ударная волна сильно разрушает скальные породы. Скорость ударной волны выше скорости звука в металле: теоретический предел прочности входной двери в убежище; танк расплющивается и сгорает.

Время: 0,028c. Расстояние: 320м Температура: 110тыс.°C. Человек развеивается потоком плазмы (скорость ударной волны = скорости звука в костях, тело разрушается в пыль и сразу сгорает). Полное разрушение самых прочных наземных построек.

Время: 0,073c. Расстояние: 400м Температура: 80тыс.°C. Неровности на сфере пропадают. Плотность вещества падает в центре почти до 1%, а на краю изотерм. сферы диамером ~320 м до 2% атмосферной.На этом расстоянии в пределах 1,5 с нагрев до 30 000 °C и падение до 7000 °C, ~5 с удержание на уровне ~6.500 °C и снижение температуры за 10-20 с по мере ухода огненного шара вверх.

Время: 0,079c. Расстояние: 435м Температура: 110тыс.°C. Полное разрушение шоссейных дорог с асфальтовым и бетонным покрытием Температурный минимум излучения ударной волны, окончание 1-й фазы свечения. Убежище типа метро, облицованное чугунными тюбингами и монолитным железобетоном и заглублённое на 18 м, по расчёту способно выдержать без разрушения взрыв (40 кт) на высоте 30 м на минимальном расстоянии 150 м (давление ударной волны порядка 5 МПа), испытано 38 кт РДС-2 на расстоянии 235 м (давление ~1,5 МПа), получило незначительные деформации, повреждения. При температурах во фронте сжатия ниже 80тыс.°C новые молекулы NO2 больше не появляются, слой двуокиси азота постепенно исчезает и перестаёт экранировать внутреннее излучение. Ударная сфера постепенно становится прозрачной и через неё, как через затемнённое стекло, некоторое время видны клубы паров бомбы и изотермическая сфера; в целом огненная сфера похожа на фейерверк. Затем, по мере увеличения прозрачности, интенсивность излучения возрастает и детали как бы снова разгорающейся сферы становятся не видны. Процесс напоминает окончание эры рекомбинации и рождение света во Вселенной через несколько сотен тысяч лет после Большого взрыва.

Время: 0,1c. Расстояние: 530м Температура: 70тыс.°C. Отрыв и уход вперёд фронта ударной волны от границы огненной сферы, скорость роста её заметно снижается. Наступает 2-я фаза свечения, менее интенсивная, но на два порядка более длительная с выходом 99 % энергии излучения взрыва в основном в видимом и ИК спектре. На первых сотнях метров человек не успевает увидеть взрыв и погибает без мучений (время зрительной реакции человека 0,1 - 0,3 с, время реакции на ожог 0,15 - 0,2 с).

Время: 0,15c. Расстояние: 580м Температура: 65тыс.°C. Радиация ~100 000 Гр. От человека остаются обугленные осколки костей (скорость ударной волны порядка скорости звука в мягких тканях: по телу проходит разрушающий клетки и ткани гидродинамический удар).

Время: 0,25c. Расстояние: 630м Температура: 50тыс.°C. Проникающая радиация ~40 000 Гр. Человек превращается в обугленные обломки: ударная волна вызывает травматические ампутацииа подошедшая через долю сек. огненная сфера обугливает останки. Полное разрушение танка. Полное разрушение подземных кабельных линий, водопроводов, газопроводов, канализации, смотровых колодцев. Разрушение подземных ж/б труб диаметром 1,5м, с толщиной стенок 0,2м. Разрушение арочной бетонной плотины ГЭС. Сильное разрушение долговременных железобетонных фортсооружений. Незначительные повреждения подземных сооружений метро.

Время: 0,4c. Расстояние: 800м Температура: 40тыс.°C. Нагрев объектов до 3000 °C. Проникающая радиация ~20 000 Гр. Полное разрушение всех защитных сооружений гражданской обороны (убежищ) разрушение защитных устройств входов в метро. Разрушение гравитационной бетонной плотины ГЭС ДОТы становятся небоеспособны дистанции 250 м.

Время: 0,73c. Расстояние: 1200м Температура: 17тыс.°C. Радиация ~5000 Гр. При высоте взрыва 1200 м нагрев приземного воздуха в эпицентре перед приходом уд. волны до 900°C. Человек - 100 %-я гибель от действия ударной волны. Разрушение убежищ, рассчитанных на 200 кПа (тип А-III или класс 3). Полное разрушение железобетонных ДОТов сборного типа на дистанции 500 м по условиям наземного взрыва. Полное разрушение железнодорожных путей. Максимум яркости второй фазы свечения сферы к этому времени она выделила ~20 % световой энергии

Время: 1,4c. Расстояние: 1600м Температура: 12тыс.°C. Нагрев объектов до 200°C. Радиация 500 Гр. Многочисленные ожоги 3-4 степени до 60-90 % поверхности тела, тяжёлое лучевое поражение, сочетающиеся с другими травмами, летальность сразу или до 100 % в первые сутки. Танк отбрасывается ~ на 10 м и повреждается. Полное резрушение металлических и железобетонных мостов пролётом 30 - 50 м.

Время: 1,6c. Расстояние: 1750м Температура: 10тыс.°C. Радиация ок. 70 Гр. Экипаж танка погибает в течение 2-3 недель от крайне тяжёлой лучевой болезни. Полное разрушение бетонных, железобетонных монолитных (малоэтажных) и сейсмостойких зданий 0,2 МПа, убежищ встроенных и отдельностоящих, рассчитанных на 100 кПа (тип А-IV или класс 4), убежищ в подвальных помещениях многоэтажных зданий.

Время: 1,9c. Расстояние: 1900м Температура: 9тыс.°C Опасные поражения человека ударной волной и отброс до 300 м с начальной скоростью до 400 км/ч, из них 100-150 м (0,3-0,5 пути) свободный полёт, а остальное расстояние - многочисленные рикошеты о грунт. Радиация около 50 Гр - молниеносная форма лучевой болезни[, 100 % летальность в течение 6-9 суток. Разрушение встроенных убежищ, рассчитанных на 50 кПа. Сильное разрушение сейсмостойких зданий. Давление 0,12 МПа и выше - вся городская застройка плотная и разряжённая превращается в сплошные завалы (отдельные завалы сливаются в один сплошной), высота завалов может составлять 3-4 м. Огненная сфера в это время достигает максимальных размеров (D~2км), подминается снизу отражённой от земли ударной волной и начинает подъём; изотермическая сфера в ней схлопывается, образуя быстрый восходящий поток в эпицентре - будущую ножку гриба.

Время: 2,6c. Расстояние: 2200м Температура: 7,5тыс.°C. Тяжёлые поражения человека ударной волной. Радиация ~10 Гр - крайне тяжёлая острая лучевая болезнь, по сочетании травм 100 % летальность в пределах 1-2 недель. Безопасное нахождение в танке, в укреплённом подвале с усиленным ж/б перекрытием и в большинстве убежищ Г. О. Разрушение грузовых автомобилей. 0,1 МПа - расчётное давление ударной волны для проектирования конструкций и защитных устройств подземных сооружений линий мелкого заложения метрополитена.

Время: 3,8c. Расстояние: 2800м Температура: 7,5тыс.°C. Радиация 1 Гр - в мирных условиях и своевременном лечении неопасное лучевое поражение, но при сопутствующих катастрофе антисанитарии и тяжёлых физических и психологических нагрузках, отсутствии медицинской помощи, питания и нормального отдыха до половины пострадавщих погибают только от радиации и сопутствующих заболеваний, а по сумме повреждений (плюс травмы и ожоги) гораздо больше. Давление менее 0,1 МПа - городские районы с плотной застройкой превращаются в сплошные завалы. Полное разрушение подвалов без усиления конструкций 0,075 МПа. Среднее разрушение сейсмостойких зданий 0,08-0,12 МПа. Сильные повреждения железобетонных ДОТов сборного типа. Детонация пиротехнических средств.

Время: 6c. Расстояние: 3600м Температура: 4,5тыс.°C. Средние поражения человека ударной волной. Радиация ~0,05 Гр - доза неопасна. Люди и предметы оставляют «тени» на асфальте. Полное разрушение административных многоэтажных каркасных (офисных) зданий (0,05-0,06 МПа), укрытий простейшего типа; сильное и полное разрушение массивных промышленных сооружений. Практически вся городская застройка разрушена с образованием местных завалов (один дом - один завал). Полное разрушение легковых автомобилей, полное уничтожение леса. Электромагнитный импульс ~3 кВ/м поражает нечувствительные электроприборы. Разрушения аналогичны землетрясению10 бал. Сфера перешла в огненный купол, как пузырь всплывающий вверх, увлекая за собой столб из дыма и пыли с поверхности земли: растёт характерный взрывной гриб с начальной вертикальной скоростью до 500 км/час. Скорость ветра у поверхности к эпицентру ~100 км/ч.

Время: 10c. Расстояние: 6400м Температура: 2тыс.°C. Окончание эффективного времени второй фазы свечения, выделилось ~80 % суммарной энергии светового излучения. Оставшиеся 20 % неопасно высвечиваются в течение порядка минуты с непрерывным понижением интенсивности, постепенно теряясь в клубах облака. Разрушение укрытий простейшего типа (0,035-0,05 МПа). На первых километрах человек не услышит грохот взрыва из-за поражения слуха ударной волной. Отброс человека ударной волной ~20 м с начальной скоростью ~30 км/ч. Полное разрушение многоэтажных кирпичных домов, панельных домов, сильное разрушение складов, среднее разрушение каркасных административных зданий. Разрушения аналогичны землетрясению 8 баллов. Безопасно почти в любом подвале.
Свечение огненного купола перестаёт быть опасным, он превращается в огненное облако, с подъёмом растущее в объёме; раскалённые газы в облаке начинают вращаться в торообразном вихре; горячие продукты взрыва локализуются в верхней части облака. Поток запылённого воздуха в столбе движется в два раза быстрее подъёма «гриба», настигает облако, проходит сквозь, расходится и как бы наматывается на него, как на кольцеобразную катушку.

Время: 15c. Расстояние: 7500м . Лёгкие поражения человека ударной волной. Ожоги третьей степени открытых частей тела. Полное разрушение деревянных домов, сильное разрушение кирпичных многоэтажных домов 0,02-0,03МПа, среднее разрушение кирпичных складов, многоэтажных железобетонных, панельных домов; слабое разрушение административных зданий 0,02-0,03 МПа, массивных промышленных сооружений. Воспламенение автомобилей. Разрушения аналогичны землетрясению 6 бал., урагану 12 бал. до 39 м/с. «Гриб» вырос до 3 км над центром взрыва (истинная высота гриба больше на высоту взрыва боеголовки, примерно на 1,5 км), у него появляется «юбочка» из конденсата паров воды в потоке тёплого воздуха, веером затягиваемого облаком в холодные верхние слои атмосферы.

Время: 35c. Расстояние: 14км. Ожоги второй степени. Воспламеняется бумага, тёмный брезент. Зона сплошных пожаров, в районах плотной сгораемой застройки возможны огненный шторм, смерч (Хиросима, «Операция Гоморра»). Слабое разрушение панельных зданий. Вывод из строя авиатехники и ракет. Разрушения аналогичны землетрясению 4-5 баллов, шторму 9-11 балов V = 21 - 28,5м/с. «Гриб» вырос до ~5 км огненное облако светит всё слабее.

Время: 1мин. Расстояние: 22км. Ожоги первой степени - в пляжной одежде возможна гибель. Разрушение армированного остекления. Корчевание больших деревьев. Зона отдельных пожаров.«Гриб» поднялся до 7,5 км облако перестаёт излучать свет и теперь имеет красноватый оттенок из-за содержащихся в нём окислов азота, чем будет резко выделяться среди других облаков.

Время: 1,5мин. Расстояние: 35км . Максимальный радиус поражения незащищённой чувствительной электроаппаратуры электромагнитным импульсом. Разбиты почти все обычные и часть армированных стёкол в окнах- актуально морозной зимой плюс возможность порезов летящими осколками. «Гриб» поднялся до 10 км, скорость подъёма ~220 км/час. Выше тропопаузы облако развивается преимущественно в ширину.
Время: 4мин. Расстояние: 85км. Вспышка похожа на большое неестественно яркое Солнце у горизонта, может вызвать ожог сетчатки глаз, прилив тепла к лицу. Подошедшая через 4 минуты ударная волна ещё может сбить с ног человека и разбить отдельные стёкла в окнах. «Гриб» поднялся свыше 16 км, скорость подъёма ~140 км/час

Время: 8мин. Расстояние: 145км. Вспышка не видна за горизонтом, зато видно сильное зарево и огненное облако. Общая высота «гриба» до 24 км, облако 9 км в высоту и 20-30 км в диаметре, своей широкой частью оно "опирается " на тропопаузу. Грибовидное облако выросло до максимальных размеров и наблюдается ешё порядка часа или более, пока не развеется ветрами и не перемешается с обычной облачностью. Из облака в течение 10-20 часов выпадают осадки с относительно крупными частицами, формируя ближний радиоактивный след.

Время: 5,5-13 часов Расстояние: 300-500км. Дальняя граница зоны умеренного заражения (зона А). Уровень радиации на внешней границе зоны 0,08 Гр/ч; суммарная доза излучения 0,4-4 Гр.

Время: ~10 месяцев. Эффективное время половинного оседания радиоактивных веществ для нижних слоёв тропической стратосферы (до 21 км), выпадение также идёт в основном в средних широтах в том же полушарии, где произведён взрыв.


Памятник первому испытанию атомной бомбы «Тринити». Этот памятник был воздвигнут на полигоне «Уайт Сэндс» в 1965 году, через 20 лет после проведения испытания «Тринити». Мемориальная доска памятника гласит: «На этом месте 16 июля 1945 года прошло первое в мире испытание атомной бомбы». Еще одна мемориальная доска, установленная ниже, свидетельствует о том, что это место получило статус национального исторического памятника. (Photo: Wikicommons)

В современном мире угроза ядерного удара по крупным городам не является полностью устраненной. Успехи процесса ядерного разоружения и сокращения наступательных вооружений, к сожалению, породили эффект самоуспокоения и недооценки реально остающейся ядерной угрозы.

Н еобходимо напомнить, что массовое проведение ядерных испытаний закончилось сравнительно недавно, в 1992 году. Всего проведено было в СССР и США суммарно 1771 испытательных взрывов, суммарной мощностью 460 Мт, из которых 45% энерговыделения приходится на сверхмощные взрывы. В США проведено 6 испытательных взрывов в диапазоне 8,9-15 Мт, суммарной мощностью 68,1 Мт, в СССР произведено также 6 испытательных взрывов в диапазоне 10-50 Мт, суммарной мощностью 136,9 Мт.

П о-прежнему остается большой ядерный арсенал, стоящий на боевом дежурстве. На 1 января 2006 года в США насчитывалось 5966 ядерных боеголовок, в России – 4399 боеголовок. Суммарное энерговыделение стратегических ядерных сил СССР оценивалось в 5 Гт. По данным на 2000 год, подготовленным Конференцией по разоружению, в мире насчитывалось 35353 ядерные боеголовки против 70481 боеголовки в 1986 году.

К роме того, существует вероятность ошибочного срабатывания системы предупреждения о ракетном нападении, результатом чего может быть самопроизвольное начало ядерной войны. Подобные ситуации, приводящие к приведению сил в боевую готовность, отмечались в 1961, 1980, 1982, 1986, 1989 годах, как в советской, так и американской системе предупреждения. В системе НОРАД отмечается до 2000 ложных сигналов в год.

И ными словами, опасность вероятного ядерного удара еще очень велика, чтобы ей пренебрегать. Существует вероятность начала ядерной войны, в которой, вне сомнения, так или иначе, примут все члены «ядерного клуба». Для Кореи опасность вероятного ядерного удара увеличилась после проведения в КНДР ядерных испытаний 9 октября 2006 года, когда был испытан ядерный заряд, энерговыделение которого составило около 1 кт. В КНДР технически возможно создание 3-5 ядерных зарядов мощностью около 20 кт, средствами доставки которых может быть баллистическая ракета «Нодон-1» с максимальным радиусом действия до 1500 км. Этого вполне достаточно для нанесения ядерного удара по Сеулу.

Н есмотря на отсутствие у Южной Кореи ядерного оружия, тем не менее, в случае глобального военного конфликта с применением ядерного оружия, страна может стать целью поражения как военный союзник США, размещающий на своей территории войска, военные базы и стратегические объекты. Другим вероятным, хотя и в гораздо меньшей степени, вариантом, может быть вооруженный конфликт между КНДР и США, в котором обе страны могут применить ядерное оружие. Технические ошибки, ложное срабатывание системы оповещения, а также союзник Республики Корея – США, обладающий возможностью произвести ракетный залп с подводных ракетоносцев в течение 13 минут, в любое время в состоянии поставить РК перед лицом ядерного удара.

Ядерный удар по городам: Хиросима

В мировой истории было два примера применения ядерного оружия против городов – ядерная бомбардировка Хиросимы 6 августа 1945 года и Нагасаки 9 августа 1945 года. Это единственные примеры, которые позволяют оценить устойчивость городов в условиях применения ЯО, и разработать меры улучшения защиты.

Я дерный взрыв в Хиросиме в 8:15 минут 6 августа 1945 года произошел на высоте около 600 метров, энерговыделение составило около 20 кт. Радиус зоны полного разрушения составил около 1,6 км (16 кв. км), площадь возникновения пожаров составила 11,4 кв. км. Эпицентр взрыва находился в точке с координатами 34° 23" 30"" северной широты, 132° 27" 30"" восточной долготы.

А нализ разрушений в Хиросиме в результате ядерной бомбардировки облегчается тем, что в 1946 году Army Map Service U.S. Army составил топографическую карту Хиросимы в масштабе 1:12500 дюймов, на которой были указаны зоны полного и частичного разрушения. Легенда и подписи на карте позволяют оценить реальный нанесенный городу ущерб.

О бычно указывается на большие разрушения, которые составили более 90% зданий, а также гибель до 140 тысяч человек (62% населения города). Однако, более детальный анализ карты показывает ряд особенностей последствий ядерной бомбардировки. В Таблице 1 приведена степень разрушения 76 промышленных, военных и инфраструктурных объектов, указанных на карте Хиросимы. Поражение города в результате бомбардировки было близким к неприемлемому ущербу, определяемому как потери 25% населения и 50% промышленного потенциала. Потери населения в Хиросиме значительно превысили уровень неприемлемых потерь, тогда как потери промышленного и военного потенциала не дотянули до этого уровня: промышленность – 48,5%, военные объекты – 31,8%, объекты инфраструктуры – 26,3%. Причем, надо указать, что не пострадали наиболее крупные и важные объекты промышленности и инфраструктуры: военный аэропорт, главная станция Хиросима и грузовая станция Хигаси-Хиросима, порты и доки, в том числе сухой док, крупная электростанция в Сакамуре, авиазавод Тоё и металлургический завод компании Japan Steel Co. Они были отделены грядой возвышенностей со средними высотами 50 метров, от эпицентра взрыва, а также акваторией бухты Хиросима.

А нализ фотографий, сделанных сразу после взрыва, показывает, что в Хиросиме уцелели многие капитальные каменные и железобетонные здания, даже те, которые находились в эпицентре взрыва. Наиболее характерным примером является здание Промышленной палаты Хиросимы (ныне «Гэнбаку Домэ» – часть мемориала жертв бомбардировки), которое находилось в эпицентре взрыва. На других фотографиях видны другие капитальные здания, в том числе с уцелевшими крышами и перекрытиями.

И так, анализ особенностей разрушений Хиросимы в результате ядерной бомбардировки позволяет сделать следующие заключения:

– огромные разрушения и гибель населения Хиросимы были обусловлены характером застройки, основная масса которой составлялась зданиями V и VI классов капитальности (сборно-щитовые, каркасные здания; облегченные здания) и V степени огнестойкости (сгораемые),

– здания и сооружения I класса долговечности и I-II степени огнестойкости (каменные, особо капитальные; огнестойкость 2,5 – 3 часа) выдержали ядерный удар,

– сложный гористый рельеф резко ослабляет воздействие поражающих факторов ядерного взрыва; под защитой холмов и гор возникают зоны, недоступные для поражающих факторов.

Другие поражающие факторы

В последствии, во время ядерных испытаний, было детально изучено действие других поражающих факторов ядерного взрыва.

С ветовое излучение представляет собой поток лучистой энергии ультрафиолетового, видимого и инфракрасного спектров. Температура светящейся области взрыва может достигать 7700 градусов, и область образует поток энергии мощностью до 1 кВт/кв. см, в 10 тысяч раз сильнее мощности солнечного света.

П ри взрыве мощностью 20 кт, зона сплошных пожаров будет иметь радиус приблизительно в 3,5 км (76,9 кв. км). Зона пожаров в завалах составит около 9,2 кв. км.

О днако, возникновение эффекта «огненного шторма» в городах, застроенных зданиями I и II степени огнестойкости, невозможно. Длительные исследования лесных и городских пожаров показывают, что для развития пожара такой силы требуется массовая застройка зданиями IV-V степени огнестойкости (наподобие застройки Хиросимы). При этом развитие пожара зависит от множества условий, в частности от состояния горючего материала. В Хиросиме «огненный шторм» возник через 20 минут после взрыва, в Нагасаки «огненного шторма» не было.

О пыт исследования пожаров показывает, что горючая нагрузка в городах составляет от 30 до 50 кг на кв. метр площади, но при пожарах в зданиях выгорает не более 50% горючего материала. В условиях ядерного взрыва и многочисленных завалов, процент выгорания будет еще меньше. В этих условиях развитие пожара в «огненный шторм» невозможно.

Р адиус серьезного повреждения железобетонных зданий ударной волной при взрыве мощностью 20 кт, составляет 1300 метров (10,6 кв. км), серьезные травмы для людей, находящихся в городской застройке, наблюдаются в радиусе 1000 метров при взрыве такой же мощности.

С мертельные дозы проникающей радиации начинаются с 450 рад (50% смертельных исходов), а с 800 рад – 100% смертельных исходов в течение 45 суток. Вместе с тем, проникающая радиация, создаваемая взрывом ядерного боеприпаса мощностью в диапазоне 10-100 кт, ослабевает в 10 раз на расстоянии от 440 до 490 метров. Такое же ослабление проникающей радиации вызывает прохождение излучения через 110 мм стали или 350 мм бетона. На этом эффекте поглощения основана методика создания противорадиационных укрытий. Подобные укрытия, оборудованные в подвальных помещениях многоэтажных зданий снижает проникающую радиацию в 500-1000 раз.

В большинстве случаев оценки воздействия поражающих факторов строились на результатах испытаний на открытой местности либо в опытной застройке, имитирующей городскую застройку домами III-IV класса капитальности и III-V степени огнестойкости. Однако в настоящее время большинство крупных городов застроено домами более высокого класса капитальности и гораздо более высокой огнестойкости. В странах Северо-Восточной Азии широко распространилась сейсмостойкая застройка.

И сходя из этого, воздействие поражающих факторов ядерного взрыва в условиях современной городской застройки должно быть пересмотрено.

Поражающие факторы ядерного взрыва в условиях Сеула

С овременный Сеул представляет собой городскую среду, качественно отличающуюся от условий Хиросимы перед ядерной бомбардировкой и полигонных испытаний.

В Сеуле насчитывается 2865 высотных зданий, свыше 11 этажей, в том числе 10 зданий выше 200 метров и 79 зданий выше 100 метров. Небоскребы составляют 3,1% высотной застройки. Из 25 муниципальных округов (ку), в 12 насчитывается более 100 высотных зданий. В Янчхон-гу насчитывается 378 высотных зданий. Иными словами, Сеул отличается большим количеством высотных зданий.

С еул отличается не только плотностью и высотностью застройки, но и сложным рельефом. Перепад высот в черте города на левом берегу реки Ханган составляет 97 метров, на правом берегу от 245 до 328 метров. Для сравнения, в Хиросиме перепад высот не превышал 50-60 метров. Изучение последствий ядерного взрыва в Нагасаки достоверно показало, что пересеченный рельеф резко ослабляет разрушающее действие ударной волны.

В подобных условиях можно быть уверенным, что основные поражающие факторы ядерного взрыва: ударная волна и световое излучение, будут воздействовать совершенно иначе, чем в Хиросиме.

В о-первых, обилие высотных зданий (основная часть которых выше 24 метров), будет препятствовать распространению светового излучения. Высотные дома будут создавать большие затененные пространства. Кроме того, большие площади остекления высотных домов будут отражать и рассеивать лучи светового излучения.

В о-вторых, большое количество высотных зданий, многие из которых создают настоящие «стены» протяженностью в километры и придают застройке Сеула характерную ячеистую структуру в плане, будет искажать и рассеивать ударную волну. Сфера избыточного давления будет иметь неправильную форму. Кроме того, дома I класса долговечности, оказавшиеся в эпицентре взрыва, за счет своего разрушения будут поглощать энергию ударной волны.

В -третьих, большое количество плотных стройматериалов: бетона, железобетона, стекла, стали, кирпича, будет поглощать проникающее излучение, электромагнитный импульс, а также задерживать выпадение радиоактивных осадков.

В свете этих обстоятельств, площадь поражения и степень разрушений при ядерном взрыве мощностью 20 кт в условиях Сеула будет значительно меньше, чем наблюдалось в Хиросиме. Более точные оценки потребуют специальных исследований, расчетов, и испытаний макетов. Предварительно можно сказать, что площадь поражения всеми видами поражающих факторов не превысит площади одного большого или двух небольших муниципальных округов (ку) Сеула. Численность населения, которое может оказаться в зоне воздействия поражающих факторов ядерного взрыва, можно приблизительно оценить в 180-200 тысяч человек (из расчета площади поражения ударной волной 10,6 кв. км и средней плотности населения Сеула 17,1 тысяч человек/ кв. км).

О дин ядерный удар по Сеулу мощностью в 20 кт ни при каких обстоятельствах не приведет к неприемлемому уровню потерь. Численность пострадавших (учитывая смертельные случаи и все виды ранений, ожогов и травм) составит около 1,9% населения Сеула, пораженная площадь составит около 1,7% общей площади города.

Н еприемлемый ущерб Сеулу (потеря 25% населения и 50% промышленной и инженерной инфраструктуры), может причинить взрыв, по меньшей мере, 30 ядерных зарядов мощностью 20 кт.

Меры защиты Сеула от возможного ядерного удара

Д ля резкого снижения числа жертв и масштабов разрушений необходимо реализовать ряд мер противоатомной защиты городов. Значение противоатомной защиты подчеркивалось с первых лет испытаний ядерного оружия: «Значительные жертвы и разрушения в городах Хиросима и Нагасаки явились следствием полной внезапности атомного нападения, отсутствия организованной противоатомной защиты городов, наличия значительного количества деревянных, непрочных (легкой конструкции) кирпичных и железобетонных зданий, а также отсутствия организованной борьбы с возникшими при взрывах пожарами».

П ри том, что условия современного Сеула и без того резко снижают эффективность воздействия поражающих факторов, тем не менее, сравнительно несложными инженерными и техническими методами можно добиться еще большей степени защиты населения Сеула в условиях ядерного взрыва.

В о-первых, эффективность воздействия светового излучения можно резко снизить путем искусственного задымления города. Для этого на высотных домах нужно установить мощные системы постановки дымовой завесы. Эта автоматическая система, соединенная с системой оповещения о пуске ракет вероятным противником. В случае получения такого сигнала, установки включаются и ставят над городом завесу из цветного дыма (например, оранжевого цвета, что является дополнительным способом оповещения населения об опасности). Основное назначение дымовой завесы – поглощение светового излучения. Мощность установок должна быть достаточной для постановки плотной дымовой завесы на 20-30 минут и должна быть возможность повторной постановки.

С опротивляемость застройки световому излучению можно повысить путем применения в строительстве покрытий и стекол с более высоким коэффициентом отражения. Чем больше будет различных отражающих поверхностей, тем слабее будет воздействие светового излучения.

П оглощение светового излучения вызовет резкое сокращение численности пораженных людей и сокращение числа пожаров.

В о-вторых, средством защиты города от воздействия ударной волны является сама застройка: все высотные здания и капитальные сооружения. Архитектурным планированием застройки можно увеличить степень сопротивления вероятной ударной волне, создав дополнительные «стены» из высотных зданий. Новые «стены» должны быть рассчитаны таким образом, чтобы ядерный удар с эпицентром в любой точке Сеула вызывал минимально возможные разрушения. Сопротивляемость застройки ударной волне можно также увеличить улучшением сейсмостойкости зданий.

В -третьих, большое количество капитальных и высотных зданий позволяет создать многочисленные убежища. Это могут быть как помещения в средней части крупных зданий, с дополнительными функциями, позволяющими укрыться непосредственно в момент ядерного взрыва, так и постоянные, специально оборудованные убежища. В ключевых точках застройки (например, больницах, крупных торгово-офисных центрах) должны быть созданы крупные убежища, способные принимать и размещать большое число людей, а также разворачивать госпитали и аварийные системы снабжения. В мирное время в них хранится аварийный запас продовольствия, медикаментов, оборудование и материалы для создания аварийных сетей водопровода (необходим для тушения пожаров, дезактивации и снабжения питьевой водой) и энергоснабжения, инструменты и механизмы для спасательных работ.

В -четвертых, основной задачей сразу после ядерного взрыва будет тушение пожаров, оказание помощи и вывоз пострадавших, работы по разборке завалов. При этом коммуникации будут, скорее всего, повреждены, а дороги и улицы заблокированы завалами. Для обеспечения аварийно-спасательных работ необходимо построить сеть специально оборудованных сейсмостойких тоннелей. Через эти тоннели можно будет подавать в пострадавший район воду и электроэнергию, перебрасывать спасателей, санитаров и врачей, вывозить пострадавших. Тоннели должны быть оборудованы выходами на поверхность и соединены с крупными убежищами в ключевых точках застройки.

С оздание подобной системы защиты города от возможного ядерного удара имеет значение также в качестве мер гражданской обороны в случае стихийных бедствий, крупных пожаров, террористических актов, техногенных аварий и катастроф.

Итак, допустим, в вашем городе взорвалась ядерная бомба малой мощности. Как долго вам придется скрываться и где это делать, чтобы избежать последствий в виде радиоактивных осадков?

Михаэль Диллон, ученый из Ливерморской национальной лаборатории, рассказал о радиоактивных осадках и способах выживания. После многочисленных исследований радиоактивных осадков, анализа многих факторов и возможного развития событий, он разработал план действий в случае катастрофы.

При этом план Диллона направлен на простых граждан, у которых нет возможности определить, куда будет дуть ветер и какая была величина взрыва.

Маленькие бомбы

Методика Диллона по защите от радиоактивных осадков пока разработана только в теории. Дело в том, что она рассчитана на небольшие ядерные бомбы от 1 до 10 килотонн.

Диллон утверждает, что сейчас ядерные бомбы ассоциируются у всех с невероятной мощью и разрушениями, которые могли бы произойти во время холодной войны. Однако такая угроза кажется менее вероятной, чем террористические атаки с применением небольших ядерных бомб, в несколько раз меньше тех, что упали на Хиросиму, и просто несравнимо меньше тех, что могли бы уничтожить всё, случись глобальная война между странами.

План Диллона основан на том предположении, что после небольшой ядерной бомбы город выжил, и теперь его жителям надо спасаться от радиоактивных осадков.

На схеме ниже видна разница между радиусом поражения от бомбы в ситуации, которую исследует Диллон, и радиусом бомбы из арсенала холодной войны. Самая опасная зона обозначена темно-синим цветом (стандарт psi — это фунт/дюйм2, который используется для измерения силы взрыва, 1 psi = 720 кг/м2).

Люди, находящиеся в километре от этой зоны взрыва, рискуют получить дозы радиации и ожоги. Диапазон радиационной опасности после взрыва небольшой ядерной бомбы гораздо меньше, чем от термоядерного оружия холодной войны.

Например, боеголовка на 10 килотонн создаст радиационную угрозу на 1 километр от эпицентра, а радиоактивные осадки могут пройти ещё на 10-20 миль. Так что получается, что ядерная атака сегодня - это не мгновенная смерть для всего живого. Может быть, ваш город даже оправится после неё.

Что делать, если бомба взорвалась

Если вы видите яркую вспышку, не подходите к окну - вы можете пострадать, пока оглядываетесь. Как в случае с громом и молнией, взрывная волна передвигается гораздо медленнее, чем взрыв.

Теперь вам придется позаботиться о защите от радиоактивных осадков, но в случае небольшого взрыва, вам не нужно искать специальное изолированное убежище. Для защиты можно будет укрыться в обычном здании, только надо знать, в каком.

Через 30 минут после взрыва вы должны найти подходящее убежище. За 30 минут вся начальная радиация от взрыва исчезнет, и главной опасностью станут радиоактивные частички, размером с песчинку, которые осядут вокруг вас.

Диллон объясняет:

Если во время катастрофы вы находитесь в ненадежном убежище, которое не может обеспечить сносную защиту, и вы знаете, что поблизости нет ни одного такого здания в пределах 15 минут, вам придется подождать полчаса, а затем идти его искать. Убедитесь, что прежде чем вы зайдете в убежище, на вас не будет радиоактивных веществ размером с частички песка.

Но какие здания могут стать нормальным убежищем? Диллон рассказывает следующее:

Между вами и последствиями взрыва должно быть как можно больше препятствий и дистанции. Здания с толстыми бетонными стенами и крышей, большое количество земли, например, когда вы сидите в подвале, со всех сторон окруженном землей. Также можно уйти вглубь больших зданий, чтобы как можно дальше находиться от открытого воздуха с последствиями катастрофы.

Подумайте, где можно найти такое здание в вашем городе, и как далеко оно находится от вас.

Может быть, это подвал вашего дома или здание с большим количеством внутренних помещений и стен, библиотека со стеллажами книг и бетонными стенами или что-нибудь другое. Только выбирайте здания, до которых вы можете добраться в течение получаса, и не надейтесь на транспорт - многие будут бежать из города, и дороги будут полностью забиты.


Допустим, вы добрались до своего убежища, и теперь встает вопрос: как долго сидеть в нем, пока угроза не минует? В фильмах показывают разные развития событий, начиная от нескольких минут в убежище и заканчивая несколькими поколениями в бункере. Диллон утверждает, что все они очень далеки от истины.

Лучше всего оставаться в убежище, пока не придет помощь.

Учитывая то, что мы говорим о небольшой бомбе, радиус поражения которой меньше мили, спасатели должны оперативно среагировать и начать эвакуацию. В том случае, если никто не придет на помощь, в убежище нужно провести не меньше суток, но всё-таки лучше подождать, пока прибудут спасатели - они укажут нужный маршрут эвакуации, чтобы вы не выскочили в места с высоким уровнем радиации.

Принцип действия радиоактивных осадков

Может показаться странным, что достаточно безопасно будет выходить из убежища через сутки, но Диллон объясняет, что самая большая опасность после взрыва исходит от ранних радиоактивных осадков, а они достаточно тяжелые, чтобы осесть уже через несколько часов после взрыва. Как правило, они покрывают зону в непосредственной близости от взрыва, в зависимости от направления ветра.


Эти крупные частицы наиболее опасны из-за высокого уровня радиации, который обеспечит немедленное наступление лучевой болезни. Этим они отличаются от меньших доз радиации, которые через много лет после происшествия.

Если вы укроетесь в убежище, это не спасет вас от перспективы рака в будущем, но зато предотвратит скорую смерть от лучевой болезни.

Стоит также помнить, что радиоактивное загрязнение - это не магическая субстанция, которая летает повсюду и проникает в любое место. Там будет ограниченный регион с высоким уровнем радиации, и после того, как вы покинете убежище, надо будет как можно скорее из него выбраться.

Вот здесь вам и нужны спасатели, которые скажут, где находится граница опасной зоны, и как далеко надо уехать. Конечно, помимо самых опасных больших частиц, в воздухе сохранится много более легких, но они не способны вызвать немедленную лучевую болезнь - то, чего вы пытаетесь избежать после взрыва.

Диллон также отметил, что радиоактивные частицы распадаются очень быстро, так что находиться вне убежища спустя 24 часа после взрыва гораздо безопаснее, чем сразу после него .


Наша поп-культура продолжает смаковать тему ядерного апокалипсиса, когда на планете остаются только немногие выжившие, укрывшиеся в подземных бункерах, но ядерная атака может оказаться не такой разрушительной и масштабной.

Так что стоит подумать о своем городе и прикинуть, куда бежать в случае чего. Может, какое-то уродливое здание из бетона, которое всегда казалось вам выкидышем архитектуры, когда-нибудь спасет вам жизнь.

Основными поражающими факторами ядерного взрыва являются ударная волна (на образование которой расходуется 50% энергии взрыва), световое излучение (35%), проникающая радиация (5%) и радиоактивное заражение (10%). Выделяются еще электромагнитный импульс и вторичные поражающие факторы.

Ударная волна - основной фактор разрушающего и поражающего действия, представляет собой зону сжатого воздуха, которая образуется при мгновенном расширении газов в центре взрыва и распространяется с огромной скоростью во все стороны, вызывая разрушения зданий, сооружений и поражения людей. Радиус действия ударной волны зависит от мощности и вида взрыва, а также характера местности. Ударная волна состоит из фронта ударной волны, зон сжатия и разрежения.

Сила действия ударной волны зависит от избыточного давления на фронте ее, которое измеряется количеством килограмм-сил, падающих на квадратный сантиметр поверхности (кгс/см 2), или в паскалях (Па): 1 Па = 0,00001 кгс/см 2 , 1 кгс/см 2 = 100 кПа (килопаскаль).

При взрывах 13-килотонных бомб в Хиросиме и Нагасаки радиус действия был выражен примерно следующими цифрами: зона сплошного разрушения и уничтожения в радиусе до 800 - 900 м (избыточное давление свыше 1 кг/см 2) - разрушение всех зданий и сооружений и почти 100% гибель людей; зона сильных разрушений и тяжелых и средних поражений людей в радиусе до 2-2,5 км (избыточное давление 0,3-1 кг/см 2); зона слабых разрушений и слабых и случайных травм людей в радиусе до 3-4 км (избыточное давление 0,04-0,2 кг/см 2).

Необходимо учитывать также «метательное» действие ударной волны и образование вторичных снарядов в виде летящих обломков зданий (кирпича, досок, стекла и т. д.), наносящих травмы людям.

При действии ударной волны на открыто расположенный личный состав при избыточном давлении более 1 кг/см 2 (100 кПа) возникают крайне тяжелые, смертельные травмы (переломы костей, кровоизлияния, кровотечения из носа, ушей, контузии, баротравма легких, разрывы полых органов, ранения вторичными снарядами, синдром длительного раздавливания под развалинами и др.), при давлении на фронте 0,5-0,9 кг/см 2 - тяжелые травмы; 0,4-0,5 кг/см 2 - средней тяжести; 0,2-0,3 кг/см 2 - легкие поражения. Однако и при избыточном давлении 0,2-0,3 кг/см2 возможны даже тяжелые травмы под действие скоростного напора и метательного действия ударной волны, если человек не успел укрыться и будет отброшен волной на несколько метров или получит травму от вторичных снарядов.

При наземных и особенно подземных ядерных взрывах наблюдаются сильные колебания (сотрясения) земли, которое условно можно сравнить с землетрясением силой до 5-7 баллов.

Средством защиты от ударной волны являются различного рода убежища и укрытия, а также складки местности, так как фронт ударной волны после отражения от земли проходит параллельно поверхности и в углублениях давление оказывается значительно меньшим.

Траншеи, окопы и укрытия от 3 до 10 раз уменьшают потери от ударной волны.

Радиус действия ударной волны более мощных ядерных боеприпасов (более 20 000 т тротилового эквивалента) равняется корню кубическому из отношения тротиловых эквивалентов, умноженному на радиус действия 20-килотонной бомбы. Например, при увеличении мощности взрыва в 1000 раз радиус действия увеличивается в 10 раз (табл. 10).

Световое излучение . От огненного шара с чрезвычайно высокой температурой в течение 10-20 с исходит мощный поток световых и тепловых (инфракрасных) лучей высокой температуры. Вблизи огненного шара все (даже минералы и металлы) расплавляется, превращается в газообразное состояние и поднимается с грибовидным облаком. Радиус действия световых излучений зависит от мощности и вида взрыва (наибольший при воздушном взрыве) и прозрачности атмосферы (дождь, туман, снег резко уменьшают действие вследствие поглощения световых лучей).

Таблица 9

Примерные радиусы действия ударной волны и светового излучения (км)

Характеристика

Мощность взрыва

Зона полного разрушения и гибели незащищенных людей (Рф-100 кПа)

Зона сильных разрушений, тяжелой и средней степени травм (Рф-30- 90 кПа)

Зона средних и слабых разрушений, средней и легкой степени травм (Рф-10-30 кПа)

III степени

II степени

I степени

Примечание. Рф - избыточное давление на фроне ударной волны. В числителе приводятся данные при воздушных взрывах, в знаменателе - при наземных. 100 кПа = 1 кг/см 2 (1 атм.).

Световое излучение вызывает воспламенение горючих веществ и массовые пожары, а у людей и животных-ожоги тела различной тяжести. В г. Хиросиме сгорело около 60 тыс. зданий и около 82% пораженных людей имели ожоги тела.

Степень поражающего действия определяется световым импульсом, то есть количеством энергии, падающей на 1 м 2 поверхности освещаемого тела, и измеряется в килоджоулях на 1 м 2 . Световой импульс в 100-200 кДж/м 2 (2-5 кал/см 2) вызывает ожог I степени, 200-400 кДж/м 2 (5-10 кал/см 2) - II, более 400 кДж/м 2 (свыше 10 кал/см 2) - III степени (100 кДж/м 2).

Степень поражения материалов световым излучением зависит от степени их нагрева, которая в свою очередь зависит от ряда факторов: величины светового импульса, свойств материала, коэффициента поглощения тепла, влажности, горючести материала и т. д. Материалы темного цвета больше поглощают световой энергии, чем светлые. Например, черное сукно поглощает 99% падающей световой энергии, материал цвета хаки-60%, белая ткань-25%.

Кроме этого, световой импульс вызывает ослепление людей, в особенности в ночное время, когда зрачок расширен. Ослепление чаще бывает временным вследствие истощения зрительного пурпура (родопсина). Но на близком расстоянии может быть ожог сетчатки и более стойкое ослепление. Поэтому нельзя смотреть на световую вспышку, надо немедленно закрывать глаза. В настоящее время имеются защитные фотохромные очки, которые от светового излучения теряют прозрачность и защищают глаза.

Проникающая радиация. В момент взрыва, примерно в течение 15-20 с, вследствие ядерных и термоядерных реакций исходит очень мощный поток ионизирующих излучений: гамма-лучей, нейтронов, альфа- и бета-частиц. Но к проникающей радиации относятся только., гамма-лучи и нейтронный поток, так как альфа- и бета-частицы имеют короткий пробег в воздухе и не обладают проникающей способностью.

Радиус действия проникающей радиации при воздушных взрывах 20-килотонной бомбы примерно выражается следующими цифрами: до 800 м - 100% смертность (доза до 10 000 Р); 1,2 км - 75% смертности (доза до 1000 Р); 2 км - лучевая болезнь I-II степени (доза 50-200 Р). При взрывах термоядерных мегатонных боеприпасов смертельные поражения могут быть в радиусе до 3-4 км из-за больших размеров огненного шара в момент взрыва, при этом большое значение приобретает нейтронный поток.

Суммарные дозы гамма- и нейтронного облучения незащищенных людей в ядерном очаге можно определить по графикам (рис. 43).

Особенно сильно проникающая радиация проявляется при взрывах нейтронных бомб. При взрыве нейтронной бомбы мощностью 1 тыс. тонн тротилового эквивалента, когда ударная волна и световое излучение поражают в радиусе 130-150 м, суммарное гамма-нейтронное излучение равняется: в радиусе 1 км - до 30 Гр (3000 рад), 1,2 км -8,5 Гр; 1,6 км - 4 Гр, до 2км -0,75-1 Гр.

Рис. 43. Суммарная доза проникающей радиации при ядерных взрывах.

Средством защиты от проникающей радиации могут служить различные укрытия и сооружения. Причем гамма-лучи сильнее поглощаются и задерживаются тяжелыми материалами с большой плотностью, а нейтроны лучше поглощаются легкими веществами. Для вычисления необходимой толщины защитных материалов вводится понятие слой половинного ослабления, то есть толщина материала, которая в 2 раза уменьшает радиацию (табл. 11).

Таблица 11

Слой половинного ослабления (К 0,5). см

Для вычисления защитной мощности укрытий применяют формулу К з = 2 S/K 0,5

где: К з - коэффициент защиты укрытия, S - толщина защитного слоя, К 0,5 -слой половинного ослабления. Из этой формулы вытекает, что 2 слоя половинного ослабления уменьшают радиацию в 4 раза, 3 слоя - в 8 раз и т. д.

Например, укрытие с земляным перекрытием толщиной 112 см уменьшает гамма-облучение в 256 раз:

К з = 2 112/14 = 2 8 = 256 (раз).

В полевых убежищах требуется, чтобы коэффициент защиты по гамма-излучениям был равен 250-1000, то есть требуется земляное перекрытие толщиной 112-140 см.

Радиоактивное заражение местности . Не менее опасным поражающим фактором ядерного оружия является радиоактивное заражение местности. Особенность этого фактора заключается в том, что радиоактивному заражению подвергаются очень большие территории, а кроме того, действие его продолжается длительное время (недели, месяцы и даже годы).

Так при испытательном взрыве, произведенном США 1.03.1954 г. в южной части Тихого океана в районе о. Бикини (10-ме-гатонной бомбы), радиоактивное заражение отмечалось на удалении до 600 км. При этом были поражены жители Маршалловых островов (267 человек), находившиеся на расстоянии от 200 до 540 км, и 23 японских рыбака на рыболовном судне, находившемся на расстоянии 160 км от центра взрыва.

Источниками радиоактивного заражения являются радиоактивные изотопы (осколки), образующиеся при делении ядер, наведенная радиоактивность и остатки непрореагировавшей части ядерного заряда.

Радиоактивные изотопы деления урана и плутония являются основным и наиболее опасным источником заражения. При цепной реакции деления урана или плутония ядра их делятся на две части с образованием различных радиоактивных изотопов. Эти изотопы в дальнейшем претерпевают в среднем по три радиоактивных распада с испусканием бета-частиц и гамма-лучей, превращаясь после этого в нерадиоактивные вещества (барий и свинец). Таким образом, в грибовидном облаке оказывается около 200 радиоактивных изотопов 35 элементов средней части таблицы Менделеева - от цинка до гадолиния.

Наиболее распространенными изотопами среди осколков деления являются изотопы иттрия, теллура, „молибдена, йода, ксенона, бария, лантана, стронция, цезия, циркония и др. Эти изотопы в огненном шаре и грибовидном облаке как бы обволакивают радиоактивной оболочкой пылевые частицы, поднимающиеся с земли, в результате чего все грибовидное облако становится радиоактивным. Там, где оседает радиоактивная пыль, местность и все предметы оказываются зараженными РВ (загрязненными продуктами ядерного взрыва, ПЯВ).

Взрывного действия, основанное на использовании внутриядерной энергии, выделяющейся при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза изотопов водорода (дейтерия и трития) в более тяжелые, например ядра изогона гелия. При термоядерных реакциях выделяется энергии в 5 раз больше, чем при реакциях деления (при одной и той же массе ядер).

Ядерное оружие включает различные ядерные боеприпасы, средства доставки их к цели (носители) и средства управления.

В зависимости от способа получения ядерной энергии боеприпасы подразделяют на ядерные (на реакциях деления), термоядерные (на реакциях синтеза), комбинированные (в которых энергия получается по схеме «деление — синтез — деление»). Мощность ядерных боеприпасов измеряется тротиловым эквивалентом, т. с. массой взрывчатого вещества тротила, при взрыве которою выделяется такое количество энергии, как при взрыве данного ядерного босирипаса. Тротиловый эквивалент измеряется в тоннах, килотоннах (кт), мегатоннах (Мт).

На реакциях деления конструируются боеприпасы мощностью до 100 кт, на реакциях синтеза — от 100 до 1000 кт (1 Мт). Комбинированные боеприпасы могут быть мощностью более 1 Мт. По мощности ядерные боеприпасы делят на сверхмалые (до 1 кг), малые (1 -10 кт), средние (10-100 кт) и сверхкрупные (более 1 Мт).

В зависимости от целей применения ядерного оружия ядерные взрывы могут быть высотными (выше 10 км), воздушными (не выше 10 км), наземными (надводными), подземными (подводными).

Поражающие факторы ядерного взрыва

Основными поражающими факторами ядерного взрыва являются: ударная волна, световое излучение ядерного взрыва, проникающая радиация, радиоактивное заражение местности и электромагнитный импульс.

Ударная волна

Ударная волна (УВ) — область резко сжатого воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью.

Раскаленные пары и газы, стремясь расшириться, производят резкий удар по окружающим слоям воздуха, сжимают их до больших давлений и плотности и нагревают до высокой температуры (несколько десятков тысяч градусов). Этот слой сжатого воздуха представляет ударную волну. Передняя граница сжатого слоя воздуха называется фронтом ударной волны. За фронтом УВ следует область разряжения, где давление ниже атмосферного. Вблизи центра взрыва скорость распространения УВ в несколько раз превышает скорость звука. С увеличением расстояния от места взрыва скорость распространения волны быстро падает. На больших расстояниях ее скорость приближается к скорости распространения звука в воздухе.

Ударная волна боеприпаса средней мощности проходит: первый километр за 1,4 с; второй — за 4 с; пятый — за 12 с.

Поражающее воздействие УВ на людей, технику, здания и сооружения характеризуется: скоростным напором; избыточным давлением во фронте движения УВ и временем ее воздействия на объект (фаза сжатия).

Воздействие УВ на людей может быть непосредственным и косвенным. При непосредственном воздействии причиной травм является мгновенное повышение давления воздуха, что воспринимается как резкий удар, ведущий к переломам, повреждению внутренних органов, разрыву кровеносных сосудов. При косвенном воздействии люди поражаются летящими обломками зданий и сооружений, камнями, деревьями, битым стеклом и другими предметами. Косвенное воздействие достигает 80 % от всех поражений.

При избыточном давлении 20-40 кПа (0,2-0,4 кгс/см 2) незащищенные люди могут получить легкие поражения (легкие ушибы и контузии). Воздействие УВ с избыточным давлением 40-60 кПа приводит к поражениям средней тяжести: потеря сознания, повреждение органов слуха, сильные вывихи конечностей, поражения внутренних органов. Крайне тяжелые поражения, нередко со смертельным исходом, наблюдаются при избыточном давлении свыше 100 кПа.

Степень поражения ударной волной различных объектов зависит от мощности и вида взрыва, механической прочности (устойчивости объекта), а также от расстояния, на котором произошел взрыв, рельефа местности и положения объектов на местности.

Для защиты от воздействия УВ следует использовать: траншеи, щели и окопы, снижающие се действие в 1,5-2 раза; блиндажи — в 2-3 раза; убежища — в 3-5 раз; подвалы домов (зданий); рельеф местности (лес, овраги, лощины и т. д.).

Световое излучение

Световое излучение — это поток лучистой энергии, включающий ультрафиолетовые, видимые и инфракрасные лучи.

Его источник — светящаяся область, образуемая раскаленными продуктами взрыва и раскаленным воздухом. Световое излучение распространяется практически мгновенно и длится, в зависимости от мощности ядерного взрыва, до 20 с. Однако сила его такова, что, несмотря на кратковременность, оно способно вызывать ожоги кожи (кожных покровов), поражение (постоянное или временное) органов зрения людей и возгорание горючих материалов объектов. В момент образования светящейся области температура на ее поверхности достигает десятков тысяч градусов. Основным поражающим фактором светового излучения является световой импульс.

Световой импульс — количество энергии в калориях, падающей на единицу площади поверхности, перпендикулярной направлению излучения, за все время свечения.

Ослабление светового излучения возможно вследствие экранирования его атмосферной облачностью, неровностями местности, растительностью и местными предметами, снегопадом или дымом. Так, густой лее ослабляет световой импульс в А-9 раз, редкий — в 2-4 раза, а дымовые (аэрозольные) завесы — в 10 раз.

Для защиты населения от световою излучения необходимо использовать защитные сооружения, подвалы домов и зданий, защитные свойства местности. Любая преграда, способная создать тень, защищает от прямого действия светового излучения и исключает ожоги.

Проникающая радиация

Проникающая радиация — ноток гамма-лучей и нейтронов, излучаемых из зоны ядерного взрыва. Время ее действия составляет 10-15 с, дальность — 2-3 км от центра взрыва.

При обычных ядерных взрывах нейтроны составляют примерно 30 %, при взрыве нейтронных боеприпасов — 70-80 % от у-излучения.

Поражающее действие проникающей радиации основано на ионизации клеток (молекул) живого организма, приводящей к гибели. Нейтроны, кроме того, взаимодействуют с ядрами атомов некоторых материалов и могут вызвать в металлах и технике наведенную активность.

Основным параметром, характеризующим проникающую радиацию, является: для у-излучений — доза и мощность дозы излучения, а для нейтронов — поток и плотность потока.

Допустимые дозы облучения населения в военное время: однократная — в течение 4 суток 50 Р; многократная — в течение 10-30 суток 100 Р; в течение квартала — 200 Р; в течение года — 300 Р.

В результате прохождения излучений через материалы окружающей среды уменьшается интенсивность излучения. Ослабляющее действие принято характеризовать слоем половинного ослабления, т. с. такой толщиной материала, проходя через которую радиация уменьшается в 2 раза. Например, в 2 раза ослабляют интенсивность у-лучей: сталь толщиной 2,8 см, бетон — 10 см, грунт — 14 см, дерево — 30 см.

В качестве защиты от проникающей радиации используются защитные сооружения , которые ослабляют ее воздействие от 200 до 5000 раз. Слой фунта в 1,5 м защищает от проникающей радиации практически полностью.

Радиоактивное загрязнение (заражение)

Радиоактивное загрязнение воздуха, местности, акватории и расположенных на них объектов происходит в результате выпадения радиоактивных веществ (РВ) из облака ядерного взрыва.

При температуре примерно 1700 °С свечение светящейся области ядерного взрыва прекращается и она превращается в темное облако, к которому поднимается пылевой столб (поэтому облако имеет грибовидную форму). Это облако движется по направлению ветра, и из него выпадают РВ.

Источниками РВ в облаке являются продукты деления ядерного горючего (урана, плутония), непрореагировавшая часть ядерного горючего и радиоактивные изотопы, образующиеся в результате действия нейтронов на грунт (наведенная активность). Эти РВ, находясь на загрязненных объектах, распадаются, испуская ионизирующие излучения, которые фактически и являются поражающим фактором.

Параметрами радиоактивного загрязнения являются доза облучения (по воздействию на людей) и мощность дозы излучения — уровень радиации (по степени загрязнения местности и различных объектов). Эти параметры являются количественной характеристикой поражающих факторов: радиоактивного загрязнения при аварии с выбросом РВ, а также радиоактивною загрязнения и проникающей радиации при ядерном взрыве.

На местности, подвергшейся радиоактивному заражению при ядерном взрыве, образуются два участка: район взрыва и след облака.

По степени опасности зараженную местность по следу облака взрыва принято делить на четыре зоны (рис. 1):

Зона А — зона умеренного заражения. Характеризуется дозой излучения до полного распада радиоактивных веществ на внешней границе зоны 40 рад и на внутренней — 400 рад. Площадь зоны А составляет 70-80 % площади всего следа.

Зона Б — зона сильного заражения. Дозы излучения на границах равны соответственно 400 рад и 1200 рад. Площадь зоны Б — примерно 10 % площади радиоактивною следа.

Зона В — зона опасного заражения. Характеризуется дозами излучения на границах 1200 рад и 4000 рад.

Зона Г — зона чрезвычайно опасного заражения. Дозы на границах 4000 рад и 7000 рад.

Рис. 1. Схема радиоактивного загрязнения местности в районе ядерного взрыва и по следу движения облака

Уровни радиации на внешних границах этих зон через 1 час после взрыва составляет соответственно 8, 80, 240, 800 рад/ч.

Большая часть радиоактивных осадков, вызывающая радиоактивное заражение местности, выпадает из облака за 10-20 ч после ядерного взрыва.

Электромагнитный импульс

Электромагнитный импульс (ЭМИ) — это совокупность электрических и магнитных полей, возникающих в результате ионизации атомов среды под воздействием гамма-излучения. Продолжительность его действия составляет несколько миллисекунд.

Основными параметрами ЭМИ являются наводимые в проводах и кабельных линиях токи и напряжения, которые могут приводить к повреждению и выводу из строя радиоэлектронной аппаратуры, а иногда и к повреждению работающих с аппаратурой людей.

При наземном и воздушном взрывах поражающее действие электромагнитного импульса наблюдается на расстоянии нескольких километров от центра ядерного взрыва.

Наиболее эффективной защитой от электромагнитного импульса является экранирование линий энергоснабжения и управления, а также радио- и электроаппаратуры.

Обстановка, складывающаяся при применении ядерного оружия в очагах поражения.

Очаг ядерного поражения — это территория, в пределах которой в результате применения ядерного оружия произошли массовые поражения и гибель людей, сельскохозяйственных животных и растений, разрушения и повреждения зданий и сооружений, коммунально-энергетических и технологических сетей и линий, транспортных коммуникаций и других объектов.

Зоны очага ядерного взрыва

Для определения характера возможных разрушений, объема и условий проведения аварийно-спасательных и других неотложных работ очаг ядерного поражения условно делят на четыре зоны: полных, сильных, средних и слабых разрушений.

Зона полных разрушений имеет па границе избыточное давление на фронте ударной волны 50 кПа и характеризуется массовыми безвозвратными потерями среди незащищенного населения (до 100 %), полными разрушениями зданий и сооружений, разрушениями и повреждениями коммунально-энергетических и технологических сетей и линий, а также части убежищ гражданской обороны, образованием сплошных завалов в населенных пунктах. Лес полностью уничтожается.

Зона сильных разрушений с избыточным давлением на фронте ударной волны от 30 до 50 кПа характеризуется: массовыми безвозвратными потерями (до 90 %) среди незащищенного населения, полными и сильными разрушениями зданий и сооружений, повреждением коммунально- энергетических и технологических сетей и линий, образованием местных и сплошных завалов в населенных пунктах и лесах, сохранением убежищ и большинства противорадиационных укрытий подвального типа.

Зона средних разрушений с избыточным давлением от 20 до 30 кПа характеризуется безвозвратными потерями среди населения (до 20 %), средними и сильными разрушениями зданий и сооружений, образованием местных и очаговых завалов, сплошных пожаров, сохранением коммунально-энергетических сетей, убежищ и большинства противорадиационных укрытий.

Зона слабых разрушений с избыточным давлением от 10 до 20 кПа характеризуется слабыми и средними разрушениями зданий и сооружений.

Очаг поражения но количеству погибших и пораженных может быть соизмерим или превосходить очаг поражения при землетрясении. Так, при бомбежке (мощность бомбы до 20 кт) города Хиросима 6 августа 1945 г. его большая часть (60 %) была разрушена, а число погибших составило до 140 000 чел.

Персонал объектов экономики и население, попадающие в зоны радиоактивного заражения, подвергаются воздействию ионизирующих излучений, что вызывает лучевую болезнь. Тяжесть болезни зависит от полученной дозы излучения (облучения). Зависимость степени лучевой болезни от величины дозы излучения приведена в табл. 2.

Таблица 2. Зависимость степени лучевой болезни от величины дозы облучения

В условиях военных действий с применением ядерного оружия в зонах радиоактивного заражения могут оказаться обширные территории, а облучение людей — принять массовый характер. Для исключения переоблучения персонала объектов и населения в таких условиях и для повышения устойчивости функционирования объектов народного хозяйства в условиях радиоактивного заражения па военное время устанавливают допустимые дозы облучения. Они составляют:

  • при однократном облучении (до 4 суток) — 50 рад;
  • многократном облучении: а) до 30 суток — 100 рад; б) 90 суток — 200 рад;
  • систематическом облучении (в течение года) 300 рад.

Вызванные применением ядерного оружия, наиболее сложные. Для их ликвидации необходимы несоизмеримо большие силы и средства, чем при ликвидации ЧС мирного времени.