Геометрическая прогрессия а1. Геометрическая прогрессия

Рассмотрим теперь вопрос о суммировании бесконечной геометрической прогрессии. Назовем частичной суммой данной бесконечной прогрессии сумму ее первых членов. Обозначим частичную сумму символом

Для каждой бесконечной прогрессии

можно составить (также бесконечную) последовательность ее частичных сумм

Пусть последовательность при неограниченном возрастании имеет предел

В этом случае число S, т. е. предел частичных сумм прогрессии, называют суммой бесконечной прогрессии. Мы докажем, что бесконечная убывающая геометрическая прогрессия всегда имеет сумму, и выведем формулу для этой суммы (можно также показать, что при бесконечная прогрессия не имеет суммы, не существует).

Запишем выражение частичной суммы как суммы членов прогрессии по формуле (91.1) и будем рассматривать предел частичной суммы при

Из теоремы п. 89 известно, что для убывающей прогрессии ; поэтому, применяя теорему о пределе разности, найдем

(здесь также использовано правило: постоянный множитель выносится за знак предела). Существование доказано, и одновременно получена формула суммы бесконечно убывающей геометрической прогрессии:

Равенство (92.1) можно также писать в виде

Здесь может казаться парадоксальным, что сумме бесконечного множества слагаемых приписывается вполне определенное конечное значение.

Можно привести наглядную иллюстрацию в пояснение такого положения. Рассмотрим квадрат со стороной, равной единице (рис. 72). Разделим этот квадрат горизонтальной линией на две равные части и верхнюю часть приложим к нижней так, чтобы образовался прямоугольник со сторонами 2 и . После этого правую половину этого прямоугольника снова разделим горизонтальной линией пополам и верхнюю часть приложим к нижней (как показано на рис. 72). Продолжая этот процесс, мы все время преобразуем исходный квадрат с площадью, равной 1, в равновеликие фигуры (принимающие вид лестницы с утоньшающимися ступеньками).

При бесконечном продолжении этого процесса вся площадь квадрата разлагается в бесконечное чьсло слагаемых - площадей прямоугольников с основаниями, равными 1, и высотами Площади прямоугольников как раз образуют при этом бесконечную убывающую прогрессию ее сумма

т. е., как и следовало ожидать, равна площади квадрата.

Пример. Найти суммы следующих бесконечных прогрессий:

Решение, а) Замечаем, что у этой прогрессии Поэтому по формуле (92.2) находим

б) Здесь значит, по той же формуле (92.2) имеем

в) Находим, что у этой прогрессии Поэтому данная прогрессия не имеет суммы.

В п. 5 было показано применение формулы суммы членов бесконечно убывающей прогрессии к обращению периодической десятичной дроби в обыкновенную дробь.

Упражнения

1. Сумма бесконечно убывающей геометрической прогрессии равна 3/5, а сумма ее первых четырех членов равна 13/27. Найти первый член и знаменатель прогрессии.

2. Найти четыре числа, образующие знакочередующуюся геометрическую прогрессию, у которой второй член меньше первого на 35, а третий больше четвертого на 560.

3. Показать, что если последовательность

образует бесконечно убывающую геометрическую прогрессию, то и последовательность

при любом образует бесконечно убывающую геометрическую прогрессию. Сохранится ли это утверждение при

Вывести формулу для произведения членов геометрической прогрессии.

Цель урока: ознакомление учащихся с новым видом последовательности – бесконечно убывающей геометрической прогрессией.
Задачи:
формулирование начального представления о пределе числовой последовательности;
знакомство с ещё одним способом обращения бесконечных периодических дробей в обыкновенные с помощью формулы суммы бесконечно убывающей геометрической прогрессии;
развитие интеллектуальных качеств личности школьников такие, как логическое мышление, способность к оценочным действиям, обобщению;
воспитание активности, взаимопомощи, коллективизма, интереса к предмету.

Скачать:


Предварительный просмотр:

Урок по теме “Бесконечно убывающая геометрическая прогрессия” (алгебра, 10кл.)

Цель урока: ознакомление учащихся с новым видом последовательности – бесконечно убывающей геометрической прогрессией.

Задачи:

формулирование начального представления о пределе числовой последовательности; знакомство с ещё одним способом обращения бесконечных периодических дробей в обыкновенные с помощью формулы суммы бесконечно убывающей геометрической прогрессии;

развитие интеллектуальных качеств личности школьников такие, как логическое мышление, способность к оценочным действиям, обобщению;

воспитание активности, взаимопомощи, коллективизма, интереса к предмету.

Оборудование: компьютерный класс, проектор, экран.

Тип урока: урок – усвоение новой темы.

Ход урока

I. Орг. момент. Сообщение темы и цели урока.

II. Актуализация знаний учащихся.

В 9 классе вы изучали арифметическую и геометрическую прогрессии.

Вопросы

1. Определение арифметической прогрессии.

(Арифметической прогрессией называется последовательность, каждый член которой,

Начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом).

2. Формула n -го члена арифметической прогрессии

3. Формула суммы первых n членов арифметической прогрессии.

( или )

4. Определение геометрической прогрессии.

(Геометрической прогрессией называется последовательность отличных от нуля чисел,

Каждый член которой, начиная со второго, равен предыдущему члену, умноженному на

Одно и то же число).

5. Формула n -го члена геометрической прогрессии

6. Формула суммы первых n членов геометрической прогрессии.

7. Какие формулы вы еще знаете?

(, где ; ;

; , )

Задания

1. Арифметическая прогрессия задана формулой a n = 7 – 4n . Найдите a 10 . (-33)

2. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите a 4 . (4)

3. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите a 17 . (-35)

4. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите S 17 . (-187)

5. Для геометрической прогрессии найдите пятый член.

6. Для геометрической прогрессии найдите n -й член.

7. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 4 . (4)

8. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 1 и q .

9. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите S 5 . (62)

III. Изучение новой темы (демонстрация презентации).

Рассмотрим квадрат со стороной, равной 1. Нарисуем ещё один квадрат, сторона которого равна половине первого квадрата, затем ещё один, сторона которого – половина второго, потом следующий и т.д. Каждый раз сторона нового квадрата равна половине предыдущего.

В результате, мы получили последовательность сторон квадратов образующих геометрическую прогрессию со знаменателем .

И, что очень важно, чем больше мы будем строить таких квадратов, тем меньше будет сторона квадрата. Например ,

Т.е. с возрастанием номера n члены прогрессии приближаются к нулю.

С помощью этого рисунка можно рассмотреть и ещё одну последовательность.

Например, последовательность площадей квадратов:

И, опять, если n неограниченно возрастает, то площадь, как угодно близко приближается к нулю.

Рассмотрим ещё один пример. Равносторонний треугольник со стороной равной 1см. Построим следующий треугольник с вершинами в серединах сторон 1-го треугольника, по теореме о средней линии треугольника – сторона 2-го равна половине стороны первого, сторона 3-го – половине стороны 2-го и т.д. Опять получаем последовательность длин сторон треугольников.

При .

Если рассмотреть геометрическую прогрессию с отрицательным знаменателем.

То, опять, с возрастанием номера n члены прогрессии приближаются к нулю.

Обратим внимание на знаменатели этих последовательностей. Везде знаменатели были меньше 1 по модулю.

Можно сделать вывод: геометрическая прогрессия будет бесконечно убывающей, если модуль её знаменателя меньше 1.

Фронтальная работа.

Определение:

Геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы. .

С помощью определения можно решить вопрос о том, является ли геометрическая прогрессия бесконечно убывающей или нет.

Задача

Является ли последовательность бесконечно убывающей геометрической прогрессией, если она заданна формулой:

Решение:

Найдем q .

; ; ; .

данная геометрическая прогрессия является бесконечно убывающей.

б) данная последовательность не является бесконечно убывающей геометрической прогрессией.

Рассмотрим квадрат со стороной, равной 1. Разделим его пополам, одну из половинок ещё пополам и т.д. площади всех полученных прямоугольников при этом образуют бесконечно убывающую геометрическую прогрессию:

Сумма площадей всех полученных таким образом прямоугольников будет равна площади 1-го квадрата и равна 1.

Но в левой части этого равенства – сумма бесконечного числа слагаемых.

Рассмотрим сумму n первых слагаемых.

По формуле суммы n первых членов геометрической прогрессии, она равна .

Если n неограниченно возрастает, то

или . Поэтому , т.е. .

Сумма бесконечно убывающей геометрической прогрессии есть предел последовательности S 1 , S 2 , S 3 , …, S n , … .

Например, для прогрессии ,

имеем

Так как

Сумму бесконечно убывающей геометрической прогрессии можно находить по формуле .

III. Осмысление и закрепление (выполнение заданий).

№13; №14; №15(1,3); №16(1,3); №18(1,3); №19; №20.

IV. Подведение итогов.

С какой последовательностью сегодня познакомились?

Дайте определение бесконечно убывающей геометрической прогрессии.

Как доказать, что геометрическая прогрессия является бесконечно убывающей?

Назовите формулу суммы бесконечно убывающей геометрической прогрессии.

V. Домашнее задание.

2. № 15(2,4); №16(2,4); 18(2,4).

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Мыслить последовательно, судить доказательно, опровергать неправильные выводы должен уметь всякий: физик и поэт, тракторист и химик. Э.Кольман В математике следует помнить не формулы, а процессы мышления. В.П.Ермаков Легче найти квадратуру круга, чем перехитрить математика. Огастес де Морган Какая наука может быть более благородна, более восхитительна, более полезна для человечества, чем математика? Франклин

Бесконечно убывающая геометрическая прогрессия 10 класс

I . Арифметическая и геометрическая прогрессии. Вопросы 1. Определение арифметической прогрессии. Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом. 2. Формула n -го члена арифметической прогрессии. 3. Формула суммы первых n членов арифметической прогрессии. 4. Определение геометрической прогрессии. Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число 5. Формула n -го члена геометрической прогрессии. 6. Формула суммы первых n членов геометрической прогрессии.

II . Арифметическая прогрессия. Задания Арифметическая прогрессия задана формулой a n = 7 – 4 n Найдите a 10 . (-33) 2. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите a 4 . (4) 3. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите a 17 . (-35) 4. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите S 17 . (-187)

II . Геометрическая прогрессия. Задания 5. Для геометрической прогрессии найдите пятый член 6. Для геометрической прогрессии найдите n -й член. 7. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 4 . (4) 8. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 1 и q . 9. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите S 5 . (62)

определение: Геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы.

Задача №1 Является ли последовательность бесконечно убывающей геометрической прогрессией, если она заданна формулой: Решение: а) данная геометрическая прогрессия является бесконечно убывающей. б) данная последовательность не является бесконечно убывающей геометрической прогрессией.

Сумма бесконечно убывающей геометрической прогрессии есть предел последовательности S 1 , S 2 , S 3 , …, S n , … . Например, для прогрессии имеем Так как Сумму бесконечно убывающей геометрической прогрессии можно находить по формуле

Выполнение заданий Найти сумму бесконечно убывающей геометрической прогрессии с первым членом 3, вторым 0,3. 2. №13; №14; учебник, стр. 138 3. №15(1;3); №16(1;3) №18(1;3); 4. №19; №20.

С какой последовательностью сегодня познакомились? Дайте определение бесконечно убывающей геометрической прогрессии. Как доказать, что геометрическая прогрессия является бесконечно убывающей? Назовите формулу суммы бесконечно убывающей геометрической прогрессии. Вопросы

Известный польский математик Гуго Штейнгаус шутливо утверждает, что существует закон, который формулируется так: математик сделает это лучше. А именно, если поручить двум людям, один из которых математик, выполнение любой незнакомой им работы, то результат всегда будет следующим: математик сделает ее лучше. Гуго Штейнгаус 14.01.1887-25.02.1972


Если каждому натуральному числу n поставить в соответствие действительное число a n , то говорят, что задано числовую последовательность :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Итак, числовая последовательность — функция натурального аргумента.

Число a 1 называют первым членом последовательности , число a 2 вторым членом последовательности , число a 3 третьим и так далее. Число a n называют n-м членом последовательности , а натуральное число n его номером .

Из двух соседних членов a n и a n +1 последовательности член a n +1 называют последующим (по отношению к a n ), а a n предыдущим (по отношению к a n +1 ).

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена , то есть формулы, которая позволяет определить член последовательности по его номеру.

Например,

последовательность положительных нечётных чисел можно задать формулой

a n = 2n - 1,

а последовательность чередующихся 1 и -1 — формулой

b n = (-1) n +1 .

Последовательность можно определить рекуррентной формулой , то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.

Например,

если a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Если а 1 = 1, а 2 = 1, a n +2 = a n + a n +1 , то первые семь членов числовой последовательности устанавливаем следующим образом:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Последовательности могут быть конечными и бесконечными .

Последовательность называется конечной , если она имеет конечное число членов. Последовательность называется бесконечной , если она имеет бесконечно много членов.

Например,

последовательность двузначных натуральных чисел:

10, 11, 12, 13, . . . , 98, 99

конечная.

Последовательность простых чисел:

2, 3, 5, 7, 11, 13, . . .

бесконечная.

Последовательность называют возрастающей , если каждый её член, начиная со второго, больше чем предыдущий.

Последовательность называют убывающей , если каждый её член, начиная со второго, меньше чем предыдущий.

Например,

2, 4, 6, 8, . . . , 2n , . . . — возрастающая последовательность;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 / n , . . . — убывающая последовательность.

Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью .

Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.

Арифметическая прогрессия

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

a 1 , a 2 , a 3 , . . . , a n , . . .

является арифметической прогрессией, если для любого натурального числа n выполняется условие:

a n +1 = a n + d ,

где d — некоторое число.

Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d .

Число d называют разностью арифметической прогрессии .

Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.

Например,

если a 1 = 3, d = 4 , то первые пять членов последовательности находим следующим образом:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d = 7 + 4 = 11,

a 4 = a 3 + d = 11 + 4 = 15,

a 5 = a 4 + d = 15 + 4 = 19.

Для арифметической прогрессии с первым членом a 1 и разностью d её n

a n = a 1 + (n - 1)d.

Например,

найдём тридцатый член арифметической прогрессии

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n - 2)d,

a n = a 1 + (n - 1)d,

a n +1 = a 1 + nd ,

то, очевидно,

a n =
a n-1 + a n+1
2

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.

Например,

a n = 2n - 7 , является арифметической прогрессией.

Воспользуемся приведённым выше утверждением. Имеем:

a n = 2n - 7,

a n-1 = 2(n - 1) - 7 = 2n - 9,

a n+1 = 2(n + 1) - 7 = 2n - 5.

Следовательно,

a n+1 + a n-1
=
2n - 5 + 2n - 9
= 2n - 7 = a n ,
2
2

Отметим, что n -й член арифметической прогрессии можно найти не толь через a 1 , но и любой предыдущий a k

a n = a k + (n - k )d .

Например,

для a 5 можно записать

a 5 = a 1 + 4d ,

a 5 = a 2 + 3d ,

a 5 = a 3 + 2d ,

a 5 = a 4 + d .

a n = a n-k + kd ,

a n = a n+k - kd ,

то, очевидно,

a n =
a n-k + a n+k
2

любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.

Кроме того, для любой арифметической прогрессии справедливо равенство:

a m + a n = a k + a l ,

m + n = k + l.

Например,

в арифметической прогрессии

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d = 7 + 7·3 = 7 + 21 = 28;

3) a 10 = 28 = (19 + 37)/2 = (a 7 + a 13 )/2;

4) a 2 + a 12 = a 5 + a 9 , так как

a 2 + a 12 = 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n = a 1 + a 2 + a 3 + . . . + a n ,

первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

Отсюда, в частности, следует, что если нужно просуммировать члены

a k , a k +1 , . . . , a n ,

то предыдущая формула сохраняет свою структуру:

Например,

в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Если дана арифметическая прогрессия, то величины a 1 , a n , d , n и S n связаны двумя формулами:

Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Арифметическая прогрессия является монотонной последовательностью. При этом:

  • если d > 0 , то она является возрастающей;
  • если d < 0 , то она является убывающей;
  • если d = 0 , то последовательность будет стационарной.

Геометрическая прогрессия

Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

b 1 , b 2 , b 3 , . . . , b n , . . .

является геометрической прогрессией, если для любого натурального числа n выполняется условие:

b n +1 = b n · q ,

где q ≠ 0 — некоторое число.

Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q .

Число q называют знаменателем геометрической прогрессии .

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

Например,

если b 1 = 1, q = -3 , то первые пять членов последовательности находим следующим образом:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q = -3 · (-3) = 9,

b 4 = b 3 · q = 9 · (-3) = -27,

b 5 = b 4 · q = -27 · (-3) = 81.

b 1 и знаменателем q её n -й член может быть найден по формуле:

b n = b 1 · q n -1 .

Например,

найдём седьмой член геометрической прогрессии 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64 .

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n ,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.

Например,

докажем, что последовательность, которая задаётся формулой b n = -3 · 2 n , является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:

b n = -3 · 2 n ,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Следовательно,

b n 2 = (-3 · 2 n ) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

что и доказывает нужное утверждение.

Отметим, что n -й член геометрической прогрессии можно найти не только через b 1 , но и любой предыдущий член b k , для чего достаточно воспользоваться формулой

b n = b k · q n - k .

Например,

для b 5 можно записать

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3 ,

b 5 = b 3 · q 2 ,

b 5 = b 4 · q .

b n = b k · q n - k ,

b n = b n - k · q k ,

то, очевидно,

b n 2 = b n - k · b n + k

квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.

Кроме того, для любой геометрической прогрессии справедливо равенство:

b m · b n = b k · b l ,

m + n = k + l .

Например,

в геометрической прогрессии

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так как

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n = b 1 + b 2 + b 3 + . . . + b n

первых n членов геометрической прогрессии со знаменателем q 0 вычисляется по формуле:

А при q = 1 — по формуле

S n = nb 1

Заметим, что если нужно просуммировать члены

b k , b k +1 , . . . , b n ,

то используется формула:

S n - S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Например,

в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Если дана геометрическая прогрессия, то величины b 1 , b n , q , n и S n связаны двумя формулами:

Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Для геометрической прогрессии с первым членом b 1 и знаменателем q имеют место следующие свойства монотонности :

  • прогрессия является возрастающей, если выполнено одно из следующих условий:

b 1 > 0 и q > 1;

b 1 < 0 и 0 < q < 1;

  • прогрессия является убывающей, если выполнено одно из следующих условий:

b 1 > 0 и 0 < q < 1;

b 1 < 0 и q > 1.

Если q < 0 , то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

P n = b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n ) n / 2 .

Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1 , то есть

|q | < 1 .

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

1 < q < 0 .

При таком знаменателе последовательность знакопеременная. Например,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n . Это число всегда конечно и выражается формулой

S = b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

7 1 , 7 3 , 7 5 , . . . — геометрическая прогрессия с знаменателем 7 2 .

b 1 , b 2 , b 3 , . . . — геометрическая прогрессия с знаменателем q , то

log a b 1 , log a b 2 , log a b 3 , . . . — арифметическая прогрессия с разностью log a q .

Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6 .

Начальный уровень

Геометрическая прогрессия. Исчерпывающий гид с примерами (2019)

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например:

Писать можно любые числа, и их может быть сколько угодно (в нашем случае их). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое - второе и так далее до последнего, то есть, можем их пронумеровать. Это и есть пример числовой последовательности:

Числовая последовательность - это множество чисел, каждому из которых можно присвоить уникальный номер.

Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и -ное число) всегда одно.

Число с номером называетмя -ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

В нашем случае:

Самые распространенные виды прогрессии это арифметическая и геометрическая. В этой теме мы поговорим о втором виде - геометрической прогрессии .

Для чего нужна геометрическая прогрессия и ее история возникновения.

Еще в древности итальянский математик монах Леонардо из Пизы (более известный под именем Фибоначчи) занимался решением практических нужд торговли. Перед монахом стояла задача определить, с помощью какого наименьшего количества гирь можно взвесить товар? В своих трудах Фибоначчи доказывает, что оптимальной является такая система гирь: Это одна из первых ситуаций, в которой людям пришлось столкнуться с геометрической прогрессией, о которой ты уже наверное слышал и имеешь хотя бы общее понятие. Как только полностью разберешься в теме, подумай, почему такая система является оптимальной?

В настоящее время, в жизненной практике, геометрическая прогрессия проявляется при вложении денежных средств в банк, когда сумма процентов начисляется на сумму, скопившуюся на счете за предыдущий период. Иными словами, если положить деньги на срочный вклад в сберегательный банк, то через год вклад увеличится на от исходной суммы, т.е. новая сумма будет равна вкладу, умноженному на. Ещё через год уже эта сумма увеличится на, т.е. получившаяся в тот раз сумма вновь умножится на и так далее. Подобная ситуация описана в задачах на вычисление так называемых сложных процентов - процент берется каждый раз от суммы, которая есть на счете с учетом предыдущих процентов. Об этих задачах мы поговорим чуть позднее.

Есть еще много простых случаев, где применяется геометрическая прогрессия. Например, распространение гриппа: один человек заразил человек, те в свою очередь заразили еще по человека, и таким образом вторая волна заражения - человек, а те в свою очередь, заразили еще … и так далее…

Кстати, финансовая пирамида, та же МММ - это простой и сухой расчет по свойствам геометрической прогрессии. Интересно? Давай разбираться.

Геометрическая прогрессия.

Допустим, у нас есть числовая последовательность:

Ты сразу же ответишь, что это легко и имя такой последовательности - арифметическая прогрессия с разностью ее членов. А как на счет такого:

Если ты будешь вычитать из последующего числа предыдущее, то ты увидишь, что каждый раз получается новая разница (и т.д.), но последовательность определенно существует и ее несложно заметить - каждое следующие число в раз больше предыдущего!

Такой вид числовой последовательности называется геометрической прогрессией и обозначается.

Геометрическая прогрессия { } - это числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число . Это число называют знаменателем геометрической прогрессии.

Ограничения, что первый член { } не равен и не случайны. Допустим, что их нет, и первый член все же равен, а q равно, хм.. пусть, тогда получается:

Согласись, что это уже никакая не прогрессия.

Как ты понимаешь, те же самые результаты мы получим, если будет каким-либо числом, отличным от нуля, а. В этих случаях прогрессии просто не будет, так как весь числовой ряд будут либо все нули, либо одно число, а все остальные нули.

Теперь поговорим поподробнее о знаменателе геометрической прогрессии, то есть о.

Повторим: - это число, во сколько раз изменяется каждый последующий член геометрической прогрессии.

Как ты думаешь, каким может быть? Правильно, положительным и отрицательным, но не нулем (мы говорили об этом чуть выше).

Допустим, что у нас положительное. Пусть в нашем случае, а. Чему равен второй член и? Ты без труда ответишь, что:

Все верно. Соответственно, если, то все последующие члены прогрессии имеют одинаковый знак - они положительны .

А что если отрицательное? Например, а. Чему равен второй член и?

Это уже совсем другая история

Попробуй посчитать член данной прогрессии. Сколько у тебя получилось? У меня. Таким образом, если, то знаки членов геометрической прогрессии чередуются. То есть, если ты увидишь прогрессию, с чередующимися знаками у ее членов, значит ее знаменатель на отрицательный. Это знание может помочь тебе проверять себя при решении задач на эту тему.

Теперь немного потренируемся: попробуй определить, какие числовые последовательности являются геометрической прогрессией, а какие арифметической:

Разобрался? Сравним наши ответы:

  • Геометрическая прогрессия - 3, 6.
  • Арифметическая прогрессия - 2, 4.
  • Не является ни арифметической, ни геометрической прогрессиями - 1, 5, 7.

Вернемся к нашей последней прогрессии, а и попробуем так же как и в арифметической найти ее член. Как ты уже догадываешься, есть два способа его нахождения.

Последовательно умножаем каждый член на.

Итак, -ой член описанной геометрической прогрессии равен.

Как ты уже догадываешься, сейчас ты сам выведешь формулу, которая поможет найти тебе любой член геометрической прогрессии. Или ты ее уже вывел для себя, расписывая, как поэтапно находить -ой член? Если так, то проверь правильность твоих рассуждений.

Проиллюстрируем это на примере нахождения -го члена данной прогрессии:

Иными словами:

Найди самостоятельно значение члена заданной геометрической прогрессии.

Получилось? Сравним наши ответы:

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно умножали на каждый предыдущий член геометрической прогрессии.
Попробуем «обезличить» данную формулу - приведем ее в общий вид и получим:

Выведенная формула верна для всех значений - как положительных, так и отрицательных. Проверь это самостоятельно, рассчитав и члены геометрической прогрессии со следующими условиями: , а.

Посчитал? Сравним полученные результаты:

Согласись, что находить член прогрессии можно было бы так же как и член, однако, есть вероятность неправильно посчитать. А если мы нашли уже -ый член геометрической прогрессии, а, то что может быть проще, чем воспользоваться «обрезанной» частью формулы.

Бесконечно убывающая геометрическая прогрессия.

Совсем недавно мы говорили о том, что может быть как больше, так и меньше нуля, однако, есть особые значения при которых геометрическая прогрессия называется бесконечно убывающей .

Как ты думаешь, почему такое название?
Для начала запишем какую-нибудь геометрическую прогрессию, состоящую из членов.
Допустим, а, тогда:

Мы видим, что каждый последующий член меньше предыдущего в раза, но будет ли какое-либо число? Ты сразу же ответишь - «нет». Вот поэтому и бесконечно убывающая - убывает, убывает, а нулем никогда не становится.

Чтобы четко понять, как это выглядит визуально, давай попробуем нарисовать график нашей прогрессии. Итак, для нашего случая формула приобретает следующий вид:

На графиках нам привычно строить зависимость от, поэтому:

Суть выражения не изменилась: в первой записи у нас была показана зависимость значения члена геометрической прогрессии от его порядкового номера, а во второй записи - мы просто приняли значение члена геометрической прогрессии за, а порядковый номер обозначили не как, а как. Все, что осталось сделать - построить график.
Посмотрим, что у тебя получилось. Вот какой график получился у меня:

Видишь? Функция убывает, стремится к нулю, но никогда его не пересечет, поэтому она бесконечно убывающая. Отметим на графике наши точки, а заодно и то, что обозначает координата и:

Попробуй схематично изобразить график геометрической прогрессии при, если первый ее член также равен. Проанализируй, в чем разница с нашим предыдущим графиком?

Справился? Вот какой график получился у меня:

Теперь, когда ты полностью разобрался в основах темы геометрической прогрессии: знаешь, что это такое, знаешь, как найти ее член, а также знаешь, что такое бесконечно убывающая геометрическая прогрессия, перейдем к ее основному свойству.

Свойство геометрической прогрессии.

Помнишь свойство членов арифметической прогрессии? Да, да, как найти значение определенного числа прогрессии, когда есть предыдущее и последующее значения членов данной прогрессии. Вспомнил? Вот это:

Теперь перед нами стоит точно такой же вопрос для членов геометрической прогрессии. Чтобы вывести подобную формулу, давай начнем рисовать и рассуждать. Вот увидишь, это очень легко, и если ты забудешь, то сможешь вывести ее самостоятельно.

Возьмем еще одну простую геометрическую прогрессию, в которой нам известны и. Как найти? При арифметической прогрессии это легко и просто, а как здесь? На самом деле в геометрической тоже нет ничего сложного - необходимо просто расписать по формуле каждое данное нам значение.

Ты спросишь, и что теперь нам с этим делать? Да очень просто. Для начала изобразим данные формулы на рисунке, и попытаемся сделать с ними различные манипуляции, чтобы прийти к значению.

Абстрагируемся от чисел, которые у нас даны, сосредоточимся только на их выражении через формулу. Нам необходимо найти значение, выделенное оранжевым цветом, зная соседствующие с ним члены. Попробуем произвести с ними различные действия, в результате которых мы сможем получить.

Сложение.
Попробуем сложить два выражения и, мы получим:

Из данного выражения, как ты видишь, мы никак не сможем выразить, следовательно, будем пробовать другой вариант - вычитание.

Вычитание.

Как ты видишь, из этого мы тоже не можем выразить, следовательно, попробуем умножить данные выражения друг на друга.

Умножение.

А теперь посмотри внимательно, что мы имеем, перемножая данные нам члены геометрической прогрессии в сравнении с тем, что необходимо найти:

Догадался о чем я говорю? Правильно, чтобы найти нам необходимо взять квадратный корень от перемноженных друг на друга соседствующих с искомым чисел геометрической прогрессии:

Ну вот. Ты сам вывел свойство геометрической прогрессии. Попробуй записать эту формулу в общем виде. Получилось?

Забыл условие при? Подумай, почему оно важно, например, попробуй самостоятельно просчитать, при. Что получится в этом случае? Правильно, полная глупость так как формула выглядит так:

Соответственно, не забывай это ограничение.

Теперь посчитаем, чему же равно

Правильный ответ - ! Если ты при расчете не забыл второе возможное значение, то ты большой молодец и сразу можешь переходить к тренировке, а если забыл - прочитай то, что разобрано далее и обрати внимание, почему в ответе необходимо записывать оба корня.

Нарисуем обе наши геометрические прогрессии - одну со значением, а другую со значением и проверим, имеют ли обе из них право на существование:

Для того, чтобы проверить, существует ли такая геометрическая прогрессия или нет, необходимо посмотреть, одинаковое ли между всеми ее заданными членами? Рассчитай q для первого и второго случая.

Видишь, почему мы должны писать два ответа? Потому что знак у искомого члена зависит от того, какой - положительный или отрицательный! А так как мы не знаем, какой он, нам необходимо писать оба ответа и с плюсом, и с минусом.

Теперь, когда ты усвоил основные моменты и вывел формулу на свойство геометрической прогрессии, найди, зная и

Сравни полученные ответы с правильными:

Как ты думаешь, а если нам были бы даны не соседние с искомым числом значения членов геометрической прогрессии, а равноудаленные от него. Например, нам необходимо найти, а даны и. Можем ли мы в этом случае использовать выведенную нами формулу? Попробуй точно так же подтвердить или опровергнуть эту возможность, расписывая из чего состоит каждое значение, как ты делал, выводя изначально формулу, при.
Что у тебя получилось?

Теперь опять посмотри внимательно.
и, соответственно:

Из этого мы можем сделать вывод, что формула работает не только при соседствующих с искомым членах геометрической прогрессии, но и с равноудаленными от искомого членами.

Таким образом, наша первоначальная формула приобретает вид:

То есть, если в первом случае мы говорили, что, то сейчас мы говорим, что может быть равен любому натуральному числу, которое меньше. Главное, чтобы был одинаков для обоих заданных чисел.

Потренируйся на конкретных примерах, только будь предельно внимателен!

  1. , . Найти.
  2. , . Найти.
  3. , . Найти.

Решил? Надеюсь, ты был предельно внимателен и заметил небольшой подвох.

Сравниваем результаты.

В первых двух случаях мы спокойно применяем вышеописанную формулу и получаем следующие значения:

В третьем случае при внимательном рассмотрении порядковых номеров данных нам чисел, мы понимаем, что они не равноудалены от искомого нами числа: является предыдущим числом, а удалена на позиции, таким образом применить формулу не предоставляется возможным.

Как же ее решать? На самом деле это не так сложно, как кажется! Давай с тобой распишем, из чего состоит каждое данное нам и искомое числа.

Итак, у нас есть и. Посмотрим, что с ними можно сделать? Предлагаю разделить на. Получаем:

Подставляем в формулу наши данные:

Следующим шагом мы можем найти - для этого нам необходимо взять кубический корень из полученного числа.

А теперь смотрим еще раз что у нас есть. У нас есть, а найти нам необходимо, а он, в свою очередь равен:

Все необходимые данные для подсчета мы нашли. Подставляем в формулу:

Наш ответ: .

Попробуй решить еще одну такую же задачу самостоятельно:
Дано: ,
Найти:

Сколько у тебя получилось? У меня - .

Как ты видишь, по сути, тебе необходимо запомнить лишь одну формулу - . Все остальные ты без какого-либо труда можешь вывести самостоятельно в любой момент. Для этого просто напиши на листочке самую простую геометрическую прогрессию и распиши, чему согласно вышеописанной формуле равно каждое ее число.

Сумма членов геометрической прогрессии.

Теперь рассмотрим формулы, которые позволяют нам быстро посчитать сумму членов геометрической прогрессии в заданном промежутке:

Чтобы вывести формулу суммы членов конечной геометрической прогрессии, умножим все части вышестоящего уравнения на. Получим:

Посмотри внимательно: что общего в последних двух формулах? Правильно, общие члены, например и так далее, кроме первого и последнего члена. Давай попробуем вычесть из 2-го уравнения 1-ое. Что у тебя получилось?

Теперь вырази через формулу члена геометрической прогрессии и подставь полученное выражение в нашу последнюю формулу:

Сгруппируй выражение. У тебя должно получиться:

Все, что осталось сделать - выразить:

Соответственно, в этом случае.

А что если? Какая формула работает тогда? Представь себе геометрическую прогрессию при. Что она из себя представляет? Правильно ряд одинаковых чисел, соответственно формула будет выглядеть следующим образом:

Как и по арифметической, так и по геометрической прогрессии существует множество легенд. Одна из них - легенда о Сете, создателе шахмат.

Многие знают, что шахматная игра была придумана в Индии. Когда индусский царь познакомился с нею, он был восхищен ее остроумием и разнообразием возможных в ней положений. Узнав, что она изобретена одним из его подданных, царь решил лично наградить его. Он вызвал изобретателя к себе и приказал просить у него все, что он пожелает, пообещав исполнить даже самое искусное желание.

Сета попросил время на размышления, а когда на другой день Сета явился к царю, он удивил царя беспримерной скромностью своей просьбы. Он попросил выдать за первую клетку шахматной доски пшеничное зерно, за вторую пшеничных зерна, за третью, за четвертую и т.д.

Царь разгневался, и прогнал Сета, сказав, что просьба слуги недостойна царской щедрости, но пообещал, что слуга получит свои зерна за все клетки доски.

А теперь вопрос: используя формулу суммы членов геометрической прогрессии, посчитай, сколько зерен должен получить Сета?

Начнем рассуждать. Так как по условию за первую клетку шахматной доски Сета попросил пшеничное зерно, за вторую, за третью, за четвертую и т.д., то мы видим, что в задаче речь идет о геометрической прогрессии. Чему равно в этом случае?
Правильно.

Всего клеток шахматной доски. Соответственно, . Все данные у нас есть, осталось только подставить в формулу и посчитать.

Чтобы представить хотя бы приблизительно «масштабы» данного числа, преобразуем, используя свойства степени:

Конечно, если ты хочешь, то можешь взять калькулятор и посчитать, что за число в итоге у тебя получится, а если нет, придется поверить мне на слово: итоговым значением выражения будет.
То есть:

квинтильонов квадрильонов триллиона миллиарда миллионов тысяч.

Фух) Если желаете представить себе огромность этого числа, то прикиньте, какой величины амбар потребовался бы для вмещения всего количества зерна.
При высоте амбара м и ширине м длина его должна была бы простираться на км, - т.е. вдвое дальше, чем от Земли до Солнца.

Если бы царь был бы силен в математике, то он мог бы предложить самому ученому отсчитывать зерна, ведь чтобы отсчитать миллион зерен, ему бы понадобилось не менее суток неустанного счета, а учитывая, что необходимо отсчитать квинтильонов, зерна пришлось бы отсчитывать всю жизнь.

А теперь решим простую задачку на сумму членов геометрической прогрессии.
Ученик 5 А класса Вася, заболел гриппом, но продолжает ходить в школу. Каждый день Вася заражает двух человек, которые, в свою очередь, заражают еще двух человек и так далее. Всего в классе человек. Через сколько дней гриппом будет болеть весь класс?

Итак, первый член геометрической прогрессии это Вася, то есть человек. -ой член геометрической прогрессии, это те два человека, которых он заразил в первый день своего прихода. Общая сумма членов прогрессии равна количеству учащихся 5А. Соответственно, мы говорим о прогрессии, в которой:

Подставим наши данные в формулу суммы членов геометрической прогрессии:

Весь класс заболеет за дней. Не веришь формулам и числам? Попробуй изобразить «заражение» учеников самостоятельно. Получилось? Смотри, как это выглядит у меня:

Посчитай самостоятельно, за сколько дней ученики заболели бы гриппом, если каждый заражал бы по человека, а в классе училось человек.

Какое значение у тебя получилось? У меня получилось, что все начали болеть спустя дня.

Как ты видишь, подобная задача и рисунок к ней напоминает пирамиду, в которой каждый последующий «приводит» новых людей. Однако, рано или поздно настает такой момент, когда последние не могут никого привлечь. В нашем случае, если представить, что класс изолирован, человек из замыкают цепочку (). Таким образом, если бы человек были вовлечены в финансовую пирамиду, в которой деньги давались в случае, если ты приведешь двух других участников, то человек (или в общем случае) не привели бы никого, соответственно, потеряли бы все, что вложили в эту финансовую аферу.

Все, что было сказано выше, относится к убывающей или возрастающей геометрической прогрессии, но, как ты помнишь, у нас есть особый вид - бесконечно убывающая геометрическая прогрессия. Как же считать сумму ее членов? И почему у данного вида прогрессии есть определенные особенности? Давай разбираться вместе.

Итак, для начала посмотрим еще раз на вот этот рисунок бесконечно убывающей геометрической прогрессии из нашего примера:

А теперь посмотрим на формулу суммы геометрической прогрессии, выведенную чуть ранее:
или

К чему у нас стремится? Правильно, на графике видно, что оно стремится к нулю. То есть при, будет почти равно, соответственно, при вычислении выражения мы получим почти. В связи с этим, мы считаем, что при подсчете суммы бесконечно убывающей геометрической прогрессии, данной скобкой можно пренебречь, так как она будет равна.

- формула сумма членов бесконечно убывающей геометрической прогрессии.

ВАЖНО! Формулу суммы членов бесконечно убывающей геометрической прогрессии мы используем только в том случае, если в условии в явном виде указано, что нужно найти сумму бесконечного числа членов.

Если указано конкретное число n, то пользуемся формулой суммы n членов, даже если или.

А теперь потренируемся.

  1. Найди сумму первых членов геометрической прогрессии с и.
  2. Найди сумму членов бесконечно убывающей геометрической прогрессии с и.

Надеюсь, ты был предельно внимателен. Сравним наши ответы:

Теперь ты знаешь о геометрической прогрессии все, и настала пора переходить от теории к практике. Самые распространенные задачи на геометрическую прогрессию, встречающиеся на экзамене - это задачи на вычисление сложных процентов. Именно о них и пойдет речь.

Задачи на вычисление сложных процентов.

Ты наверняка слышал о так называемой формуле сложных процентов. Понимаешь ли ты, что она значит? Если нет, давай разбираться, так как осознав сам процесс, ты сразу поймешь, причем здесь геометрическая прогрессия.

Все мы ходим в банк и знаем, что существуют разные условия по вкладам: это и срок, и дополнительное обслуживание, и процент с двумя различными способами его начисления - простым и сложным.

С простыми процентами все более или менее понятно: проценты начисляются один раз в конце срока вклада. То есть, если мы говорим о том, что мы кладем 100 рублей на год под, то зачислятся только в конце года. Соответственно, к окончанию вклада мы получим рублей.

Сложные проценты — это такой вариант, при котором происходит капитализация процентов , т.е. их причисление к сумме вклада и последующий расчет дохода не от первоначальной, а от накопленной суммы вклада. Капитализация происходит не постоянно, а с некоторой периодичностью. Как правило, такие периоды равны и чаще всего банки используют месяц, квартал или год.

Допустим, что мы кладем все те же рублей по годовых, но с ежемесячной капитализацией вклада. Что у нас получается?

Все ли тебе здесь понятно? Если нет, давай разбираться поэтапно.

Мы принесли в банк рублей. К концу месяца у нас на счете должна появиться сумма, состоящая из наших рублей плюс процентов по ним, то есть:

Согласен?

Мы можем вынести за скобку и тогда мы получим:

Согласись, эта формула уже больше похожа на написанную нами в начале. Осталось разобраться с процентами

В условии задачи нам сказано про годовых. Как ты знаешь, мы не умножаем на - мы переводим проценты в десятичные дроби, то есть:

Верно? Сейчас ты спросишь, а откуда взялось число? Очень просто!
Повторюсь: в условии задачи сказано про ГОДОВЫЕ проценты, начисление которых происходит ЕЖЕМЕСЯЧНО . Как ты знаешь, в году месяцев, соответственно, банк будет начислять нам в месяц часть от годовых процентов:

Осознал? А теперь попробуй написать, как будет выглядеть эта часть формулы, если я скажу, что проценты начисляются ежедневно.
Справился? Давай сравним результаты:

Молодец! Вернемся к нашей задаче: напиши, сколько будет начислено на наш счет на второй месяц, с учетом, что проценты начисляются на накопленную сумму вклада.
Вот что получилось у меня:

Или, иными словами:

Я думаю, что ты уже заметил закономерность и увидел во всем этом геометрическую прогрессию. Напиши, чему будет равен ее член, или, иными словами, какую сумму денежных средств мы получим в конце месяца.
Сделал? Проверяем!

Как ты видишь, если ты кладешь деньги в банк на год под простой процент, то ты получишь рублей, а если под сложный - рублей. Выгода небольшая, но так происходит только в течение -го года, а вот на более длительный период капитализация намного выгодней:

Рассмотрим еще один тип задач на сложные проценты. После того, в чем ты разобрался, это будет для тебя элементарно. Итак, задача:

Компания «Звезда» начала инвестировать в отрасль в 2000 году, имея капитал долларов. Каждый год, начиная с 2001 года, она получает прибыль, которая составляет от капитала предыдущего года. Сколько прибыли получит компания «Звезда» по окончанию 2003 года, если прибыль из оборота не изымалась?

Капитал компании «Звезда» в 2000 году.
- капитал компании «Звезда» в 2001 году.
- капитал компании «Звезда» в 2002 году.
- капитал компании «Звезда» в 2003 году.

Либо мы можем написать кратко:

Для нашего случая:

2000 год, 2001 год, 2002 год и 2003 год.

Соответственно:
рублей
Заметь, в данной задаче у нас нет деления ни на, ни на, так как процент дан ЕЖЕГОДНЫЙ и начисляется он ЕЖЕГОДНО. То есть, читая задачу на сложные проценты, обрати внимание, какой процент дан, и в какой период он начисляется, и только потом приступай к вычислениям.
Теперь ты знаешь о геометрической прогрессии все.

Тренировка.

  1. Найдите член геометрической прогрессии, если известно, что, а
  2. Найдите сумму первых членов геометрической прогрессии, если известно, что, а
  3. Компания «МДМ Капитал» начала инвестировать в отрасль в 2003 году, имея капитал долларов. Каждый год, начиная с 2004 года, она получает прибыль, которая составляет от капитала предыдущего года. Компания «МСК Денежные потоки» стала инвестировать в отрасль в 2005 году в размере 10000 долларов, начиная получать прибыль с 2006 года в размере. На сколько долларов капитал одной компании больше другой по окончанию 2007 года, если прибыль из оборота не изымалась?

Ответы:

  1. Так как в условии задачи не сказано, что прогрессия бесконечная и требуется найти сумму конкретного числа ее членов, то расчет идет по формуле:

  2. Компания «МДМ Капитал»:

    2003, 2004, 2005, 2006, 2007 года.
    - увеличивается на 100%, то есть в 2 раза.
    Соответственно:
    рублей
    Компания «МСК Денежные потоки»:

    2005, 2006, 2007 года.
    - увеличивается на, то есть в раза.
    Соответственно:
    рублей
    рублей

Подведем итоги.

1) Геометрическая прогрессия { } - это числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число. Это число называют знаменателем геометрической прогрессии.

2) Уравнение членов геометрической прогрессии - .

3) может принимать любые значения, кроме и.

  • если, то все последующие члены прогрессии имеют одинаковый знак - они положительны ;
  • если, то все последующие члены прогрессии чередуют знаки;
  • при - прогрессия называется бесконечно убывающей.

4) , при - свойство геометрической прогрессии (соседствующие члены)

либо
, при (равноудаленные члены)

При нахождении не стоит забывать о том, что ответа должно быть два .

Например,

5) Сумма членов геометрической прогрессии вычисляется по формуле:
или

Если прогрессия является бесконечно убывающей, то:
или

ВАЖНО! Формулу суммы членов бесконечно убывающей геометрической прогрессии мы используем только в том случае, если в условии в явном виде указано, что нужно найти сумму бесконечного числа членов.

6) Задачи на сложные проценты также вычисляются по формуле -го члена геометрической прогрессии, при условии, что денежные средства из оборота не изымались:

ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ. КОРОТКО О ГЛАВНОМ

Геометрическая прогрессия { } - это числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число. Это число называют знаменателем геометрической прогрессии.

Знаменатель геометрической прогрессии может принимать любые значения, кроме и.

  • Если, то все последующие члены прогрессии имеют одинаковый знак - они положительны ;
  • если, то все последующие члены прогрессии чередуют знаки;
  • при - прогрессия называется бесконечно убывающей.

Уравнение членов геометрической прогрессии - .

Сумма членов геометрической прогрессии вычисляется по формуле:
или

Это число называется знаменателем геометрической прогрессии, т. е. каждый член отличается от предыдущего в q раз. (Будем считать, что q ≠ 1, иначе все уж слишком тривиально). Нетрудно видеть, что общая формула n -го члена геометрической прогрессии b n = b 1 q n – 1 ; члены с номерами b n и b m отличаются в q n – m раз.

Уже в Древнем Египте знали не только арифметическую, но и геометрическую прогрессию. Вот, например, задача из папируса Райнда: «У семи лиц по семи кошек; каждая кошка съедает по семи мышей, каждая мышь съедает по семи колосьев, из каждого колоса может вырасти по семь мер ячменя. Как велики числа этого ряда и их сумма?»


Рис. 1. Древнеегипетская задача о геометрической прогресии

Эта задача много раз с разными вариациями повторялась и у других народов в другие времена. Например, в написанной в XIII в. «Книге об абаке» Леонардо Пизанского (Фибоначчи) есть задача, в которой фигурируют 7 старух, направляющихся в Рим (очевидно, паломниц), у каждой из которых 7 мулов, на каждом из которых по 7 мешков, в каждом из которых по 7 хлебов, в каждом из которых по 7 ножей, каждый из которых в 7 ножнах. В задаче спрашивается, сколько всего предметов.

Сумма первых n членов геометрической прогрессии S n = b 1 (q n – 1) / (q – 1) . Эту формулу можно доказать, например, так: S n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 .

Добавим к S n число b 1 q n и получим:

S n + b 1 q n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 + b 1 q n = b 1 + (b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n –1) q = b 1 + S n q .

Отсюда S n (q – 1) = b 1 (q n – 1) , и мы получаем необходимую формулу.

Уже на одной из глиняных табличек Древнего Вавилона, относящейся к VI в. до н. э., содержится сумма 1 + 2 + 2 2 + 2 3 + ... + 2 9 = 2 10 – 1. Правда, как и в ряде других случаев мы не знаем, откуда этот факт был известен вавилонянам.

Быстрое возрастание геометрической прогрессии в ряде культур, – в частности, в индийской, – неоднократно используется как наглядный символ необозримости мироздания. В известной легенде о появлении шахмат властелин предоставляет их изобретателю возможность самому выбрать награду, и тот просит такое количество пшеничных зерен, которое получится, если одно положить на первую клетку шахматной доски, два – на вторую, четыре – на третью, восемь – на четвертую и т. д., всякий раз число увеличивается вдвое. Владыка думал, что речь идет, самое большое, о нескольких мешках, но он просчитался. Нетрудно видеть, что за все 64 клетки шахматной доски изобретатель должен был бы получить (2 64 – 1) зерно, что выражается 20-значным числом; даже если засевать всю поверхность Земли, потребовалось бы не менее 8 лет, чтобы собрать необходимое количество зерен. Эту легенду иногда интерпретируют как указание на практически неограниченные возможности, скрытые в шахматной игре.

То, что это число действительно 20-значное, увидеть нетрудно:

2 64 = 2 4 ∙ (2 10) 6 = 16 ∙ 1024 6 ≈ 16 ∙ 1000 6 = 1,6∙10 19 (более точный расчет дает 1,84∙10 19). А вот интересно, сможете ли вы узнать, какой цифрой оканчивается данное число?

Геометрическая прогрессия бывает возрастающей, если знаменатель по модулю больше 1, или убывающей, если он меньше единицы. В последнем случае число q n при достаточно больших n может стать сколь угодно малым. В то время как возрастающая геометрическая прогрессия возрастает неожиданно быстро, убывающая столь же быстро убывает.

Чем больше n , тем слабее число q n отличается от нуля, и тем ближе сумма n членов геометрической прогрессии S n = b 1 (1 – q n ) / (1 – q ) к числу S = b 1 / (1 – q ) . (Так рассуждал, например, Ф. Виет). Число S называется суммой бесконечно убывающей геометрической прогрессии. Тем не менее, долгие века вопрос о том, какой смысл имеет суммирование ВСЕЙ геометрической прогрессии, с ее бесконечным числом членов, не был достаточно ясен математикам.

Убывающую геометрическую прогрессию можно видеть, например, в апориях Зенона «Деление пополам» и «Ахиллес и черепаха». В первом случае наглядно показывается, что вся дорога (предположим, длины 1) является суммой бесконечного числа отрезков 1/2, 1/4, 1/8 и т. д. Так оно, конечно, и есть с точки зрения представлений о конечной сумме бесконечной геометрической прогрессии. И все же – как такое может быть?

Рис. 2. Прогрессия с коэффициентом 1/2

В апории про Ахиллеса ситуация чуть более сложная, т. к. здесь знаменатель прогрессии равен не 1/2, а какому-то другому числу. Пусть, например, Ахиллес бежит со скоростью v , черепаха движется со скоростью u , а первоначальное расстояние между ними равно l . Это расстояние Ахиллес пробежит за время l /v , черепаха за это время сдвинется на расстояние lu /v . Когда Ахиллес пробежит и этот отрезок, дистанция между ним и черепахой станет равной l (u /v ) 2 , и т. д. Получается, что догнать черепаху – значит найти сумму бесконечно убывающей геометрической прогрессии с первым членом l и знаменателем u /v . Эта сумма – отрезок, который в итоге пробежит Ахиллес до места встречи с черепахой – равен l / (1 – u /v ) = lv / (v – u ) . Но, опять-таки, как надо интерпретировать этот результат и почему он вообще имеет какой-то смысл, долгое время было не очень ясно.

Рис. 3. Геометрическая прогрессия с коэффициентом 2/3

Сумму геометрической прогрессии использовал Архимед при определении площади сегмента параболы. Пусть данный сегмент параболы отграничен хордой AB и пусть в точке D параболы касательная параллельна AB . Пусть C – середина AB , E – середина AC , F – середина CB . Проведем прямые, параллельные DC , через точки A , E , F , B ; пусть касательную, проведенную в точке D , эти прямые пересекают в точках K , L , M , N . Проведем также отрезки AD и DB . Пусть прямая EL пересекает прямую AD в точке G , а параболу в точке H ; прямая FM пересекает прямую DB в точке Q , а параболу в точке R . Согласно общей теории конических сечений, DC – диаметр параболы (то есть отрезок, параллельный ее оси); он и касательная в точке D могут служить осями координат x и y , в которых уравнение параболы записывается как y 2 = 2px (x – расстояние от D до какой-либо точки данного диаметра, y – длина параллельного данной касательной отрезка от этой точки диаметра до некоторой точки на самой параболе).

В силу уравнения параболы, DL 2 = 2 ∙ p ∙ LH , DK 2 = 2 ∙ p ∙ KA , а поскольку DK = 2DL , то KA = 4LH . Т. к. KA = 2LG , LH = HG . Площадь сегмента ADB параболы равна площади треугольника ΔADB и площадям сегментов AHD и DRB , вместе взятых. В свою очередь, площадь сегмента AHD аналогичным образом равна площади треугольника AHD и оставшихся сегментов AH и HD , с каждым из которых можно провести ту же операцию – разбить на треугольник (Δ) и два оставшихся сегмента (), и т. д.:

Площадь треугольника ΔAHD равна половине площади треугольника ΔALD (у них общее основание AD , а высоты отличаются в 2 раза), которая, в свою очередь, равна половине площади треугольника ΔAKD , а значит, и половине площади треугольника ΔACD . Таким образом, площадь треугольника ΔAHD равна четверти площади треугольника ΔACD . Аналогично, площадь треугольника ΔDRB равна четверти площади треугольника ΔDFB . Итак, площади треугольников ΔAHD и ΔDRB , вместе взятые, равны четверти площади треугольника ΔADB . Повторение этой операции в применении к сегментам AH , HD , DR и RB выделит и из них треугольники, площадь которых, вместе взятых, будет в 4 раза меньше, чем площадь треугольников ΔAHD и ΔDRB , вместе взятых, а значит, в 16 раз меньше, чем площади треугольника ΔADB . И так далее:

Таким образом, Архимед доказал, что «всякий сегмент, заключенный между прямой и параболой, составляет четыре трети треугольника, имеющего с ним одно и то же основание и равную высоту».