Какие бывают признаки делимости. Основные признаки делимости

Из школьной программы многие помнят, что существуют признаки делимости. Под данным словосочетанием понимают правила, которые позволяют достаточно быстро определить, является ли число кратным заданному, не совершая при этом непосредственную арифметическую операцию. Данный способ основан на действиях, совершаемых с частью цифр из записи в позиционной

Самые простые признаки делимости многие помнят из школьной программы. Например, то, что на 2 делятся все числа, последняя цифра в записи которых четная. Данный признак наиболее легко запомнить и применять на практике. Если говорить о способе деления на 3, то для многозначных чисел применяется следующее правило, которое можно показать на таком примере. Необходимо узнать, будет ли 273 кратно трем. Для этого выполняем следующую операцию: 2+7+3=12. Полученная сумма делится на 3, следовательно, и 273 будет делиться на 3 таким образом, что в результате получится целое число.

Признаки делимости на 5 и 10 будут следующие. В первом случае запись будет оканчиваться на цифры 5 или 0, во втором случае только на 0. Для того чтобы узнать, кратно ли делимое четырем, следует поступить следующим образом. Необходимо вычленить две последние цифры. Если это два нуля или число, которое делится на 4 без остатка, то и все делимое будет кратно делителю. Нужно отметить, что перечисленные признаки используются только в десятичной системе. Они не применяются в других способах счисления. В таких случаях выводятся свои правила, которые зависят от основания системы.

Признаки деления на 6 следующие. 6 в том случае, если оно кратно и 2, и 3. Для того чтобы определить, делится ли число на 7, нужно удвоить последнюю цифру в его записи. Полученный результат вычитается из первоначального числа, в котором не учитывается последняя цифра. Данное правило можно рассмотреть на следующем примере. Необходимо узнать, кратно ли 364. Для этого 4 умножается на 2, получается 8. Далее выполняется следующее действие: 36-8=28. Полученный результат кратен 7, а, следовательно, и первоначальное число 364 можно разделить на 7.

Признаки делимости на 8 звучат следующим образом. Если три последних цифры в записи числа образуют число, которое кратно восьми, то и само число будет делиться на заданный делитель.

Узнать, делится ли многозначное число на 12, можно следующим образом. По перечисленным выше признакам делимости необходимо узнать, кратно ли число 3 и 4. Если они могут выступать одновременно делителями для числа, то с заданным делимым можно проводить и операцию деления на 12. Подобное правило применяется и для других сложных чисел, например, пятнадцати. При этом делителями должны выступать 5 и 3. Чтобы узнать, делится ли число на 14, следует посмотреть, кратно ли оно 7 и 2. Так, можно рассмотреть это на следующем примере. Необходимо определить, можно ли 658 разделить на 14. Последняя цифра в записи четная, следовательно, число кратно двум. Далее мы 8 умножаем на 2, получаем 16. Из 65 нужно вычесть 16. Результат 49 делится на 7, как и все число. Следовательно, 658 можно разделить и на 14.

Если две последние цифры в заданном числе делятся на 25, то и все оно будет кратно этому делителю. Для многозначных чисел признак делимости на 11 будет звучать следующим образом. Необходимо узнать, кратна ли заданному делителю разность сумм цифр, которые стоят на нечетных и четных местах в его записи.

Нужно отметить, что признаки делимости чисел и их знание очень часто значительно упрощает многие задачи, которые встречаются не только в математике, но и в повседневной жизни. Благодаря умению определить, кратно ли число другому, можно быстро выполнять различные задания. Помимо этого, применение данных способов на занятиях математики поможет развивать у студентов или школьников, будет способствовать развитию определенных способностей.

Существуют признаки, по которым иногда легко узнать, не производя деления на самом деле, делится или не делится данное число на некоторые другие числа.

Числа, которые делятся на 2, называют чётными . Число нуль тоже относится к чётным числам. Все остальные числа называют нечётными :

0, 2, 4, 6, 8, 10, 12, ... - чётные,
1, 3, 5, 7, 9, 11, 13, ... - нечётные.

Признаки делимости

Признак делимости на 2 . Число делится на 2, если его последняя цифра чётная. Например, число 4376 делится на 2, так как последняя цифра (6) - чётная.

Признак делимости на 3 . На 3 делятся только те числа, у которых сумма цифр делится на 3. Например, число 10815 делится на 3, так как сумма его цифр 1 + 0 + 8 + 1 + 5 = 15 делится на 3.

Признаки делимости на 4 . Число делится на 4, если две последние его цифры нули или образуют число, которое делится на 4. Например, число 244500 делится на 4, так как оно оканчивается двумя нулями. Числа 14708 и 7524 делятся на 4, так как две последние цифры этих чисел (08 и 24) делятся на 4.

Признаки делимости на 5 . На 5 делятся те числа, которые оканчиваются на 0 или 5. Например, число 320 делится на 5, так как последняя цифра 0.

Признак делимости на 6 . Число делится на 6, если оно делится одновременно на 2 и на 3. Например, число 912 делится на 6, так как оно делится и на 2 и на 3.

Признаки делимости на 8 . На 8 делятся те числа, у которых три последние цифры являются нулями или образуют число, которое делится на 8. Например, число 27000 делится на 8, так как оно оканчивается тремя нулями. Число 63128 делится на 8, так как три последние цифры образуют число (128), которое делится на 8.

Признак делимости на 9 . На 9 делятся только те числа, у которых сумма цифр делится на 9. Например, число 2637 делится на 9, так как сумма его цифр 2 + 6 + 3 + 7 = 18 делится на 9.

Признаки делимости на 10, 100, 1000 и т. д. На 10, 100, 1000 и так далее делятся те числа, которые оканчиваются соответственно одним нулём, двумя нулями, тремя нулями и так далее. Например, число 3800 делится на 10 и на 100.

Определение 1. Пусть число a 1) есть произведение двух чисел b и q так, что a=bq. Тогда a называется кратным b .

1) В данной статье под словом число будем понимать целое число.

Можно сказать также a делится на b, или b есть делитель a , или b делит a , или b входит множителем в a .

Из определения 1 вытекают следующие утверждения:

Утверждение 1. Если a -кратное b , b -кратное c , то a кратное c .

Действительно. Так как

где m и n какие то числа, то

Следовательно a делится на c.

Если в ряду чисел, каждое делится на следующее за ним, то каждое число есть кратное всех последующих чисел.

Утверждение 2. Если числа a и b - кратные числа c , то их сумма и разность также кратные числа c .

Действительно. Так как

a+b=mc+nc=(m+n)c,

a−b=mc−nc=(m−n)c.

Следовательно a+b делится на c и a−b делится на c .

Признаки делимости

Выведем общую формулу для определения признака делимости чисел на некоторое натуральное число m , которое называется признаком делимости Паскаля.

Найдем остатки деления на m следующей последовательностью. Пусть остаток от деления 10 на m будет r 1 , 10·r 1 на m будет r 2 , и т.д. Тогда можно записать:

Докажем, что остаток деления числа A на m равна остатку деления числа

(3)

Как известно, если два числа при делении на какое то число m дают одинаковый остаток, то из разность делится на m без остатка.

Рассмотрим разность A−A"

(6)
(7)

Каждый член правой части (5) делится на m следовательно левая часть уравнения также делится на m . Рассуждая аналогично, получим - правая часть (6) делится на m , следовательно левая часть (6) также делится на m , правая часть (7) делится на m , следовательно левая часть (7) также делится на m . Получили, что правая часть уравнения (4) делится на m . Следовательно A и A" имеют одинаковый остаток при делении на m . В этом случае говорят, что A и A" равноостаточные или сравнимыми по модулю m .

Таким образом, если A" делится на m m ) , то A также делится на m (имеет нулевой остаток от деления на m ). Мы показали что для определения делимости A можно определить делимость более простого числа A" .

Исходя из выражения (3), можно получить признаки делимости для конкретных чисел.

Признаки делимости чисел 2, 3, 4, 5, 6, 7, 8, 9, 10

Признак делимости на 2.

Следуя процедуре (1) для m=2 , получим:

Все остатки от деления на 2 равняются нулю. Тогда, из уравнения (3) имеем

Все остатки от деления на 3 равняются 1. Тогда, из уравнения (3) имеем

Все остатки от деления на 4 кроме первого равняются 0. Тогда, из уравнения (3) имеем

Все остатки равны нулю. Тогда, из уравнения (3) имеем

Все остатки равны 4. Тогда, из уравнения (3) имеем

Следовательно число делится на 6 тогда и только тогда, когда учетверённое число десятков, сложенное с числом единиц, делится на 6. То есть из числа отбрасываем правую цифру, далее суммируем полученное число с 4 и добавляем отброшенное число. Если данное число делится на 6, то исходное число делится на 6.

Пример. 2742 делится на 6, т.к. 274*4+2=1098, 1098=109*4+8=444, 444=44*4+4=180 делится на 6.

Более простой признак делимости. Число делится на 6, если оно делится на 2 и на 3 (т.е. если оно четное число и если сумма цифр делится на 3). Число 2742 делится на 6, т.к. число четное и 2+7+4+2=15 делится на 3.

Признак делимости на 7.

Следуя процедуре (1) для m=7 , получим:

Все остатки разные и повторяются через 7 шагов. Тогда, из уравнения (3) имеем

Все остатки все остатки нулевые, кроме первых двух. Тогда, из уравнения (3) имеем

Все остатки от деления на 9 равняются 1. Тогда, из уравнения (3) имеем

Все остатки от деления на 10 равняются 0. Тогда, из уравнения (3) имеем

Следовательно число делится на 10 тогда и только тогда, когда последняя цифра делится на 10 (то есть последняя цифра нулевая).

Приступим к рассмотрению темы «Признак делимости на 3 ». Начнем с формулировки признака, приведем доказательство теоремы. Затем рассмотрим основные подходы к установлению делимости на 3 чисел, значение которых задано некоторым выражением. В разделе приведен разбор решения основных типов задач, основанных на применении признака делимости на 3 .

Признак делимости на 3 , примеры

Формулируется признак делимости на 3 просто: целое число будет делиться на 3 без остатка, если сумма входящих в его состав цифр делится на 3 . Если суммарное значение всех цифр, которые входят в состав целого числа, на 3 не делится, то и само исходное число на 3 не делится. Получить сумму всех входящих в целое число цифр можно с помощью сложения натуральных чисел.

Теперь рассмотрим примеры применения признака делимости на 3 .

Пример 1

Делится ли на 3 число - 42 ?

Решение

Для того, чтобы ответить на этот вопрос, сложим все цифры, входящие в состав числа - 42: 4 + 2 = 6 .

Ответ: согласно признаку делимости, раз сумма цифр, входящих с восстав исходного числа, делится на три, то и само исходное число делится на 3 .

Для того, чтобы ответить на вопрос о том, делится ли на 3 число 0 , нам понадобится свойство делимости, согласно которому нуль делится на любое целое число. Получается, что нуль делится на три.

Существуют задачи, для решения которых прибегать в признаку делимости на 3 необходимо несколько раз.

Пример 2

Покажите, что число 907 444 812 делится на 3 .

Решение

Найдем сумму всех цифр, которые образуют запись исходного числа: 9 + 0 + 7 + 4 + 4 + 4 + 8 + 1 + 2 = 39 . Теперь нам нужно определить, делится ли на 3 число 39 . Еще раз складываем цифры, входящие в состав этого числа: 3 + 9 = 12 . Нам осталось провести сложение цифр еще раз для того, чтобы получить окончательный ответ: 1 + 2 = 3 . Число 3 делится на 3

Ответ: исходное число 907 444 812 также делится на 3 .

Пример 3

Делится ли на 3 число − 543 205 ?

Решение

Посчитаем сумму цифр, входящих в состав исходного числа: 5 + 4 + 3 + 2 + 0 + 5 = 19 . Теперь посчитаем сумму цифр полученного числа: 1 + 9 = 10 . Для того, чтобы получить окончательный ответ, найдем результат еще одного сложения: 1 + 0 = 1 .
Ответ: единица на 3 не делится, значит и исходное число на 3 не делится.

Для того, чтобы определить, делится ли данное число на 3 без остатка, мы можем провести деление данного числа на 3 . Если разделить число − 543 205 из рассмотренного выше примера столбиком на три, то в ответе мы не получим целого числа. Это точно также значит, что − 543 205 на 3 без остатка не делится.

Доказательство признака делимости на 3

Здесь нам понадобятся следующие навыки: разложение числа по разрядам и правило умножения на 10 , 100 и т.д. Для того, чтобы провести доказательство, нам необходимо получить представление числа a вида , где a n , a n − 1 , … , a 0 – это цифры, которые располагаются слева направо в записи числа.

Приведем пример с использованием конкретного числа: 528 = 500 + 20 + 8 = 5 · 100 + 2 · 10 + 8 .

Запишем ряд равенств: 10 = 9 + 1 = 3 · 3 + 1 , 100 = 99 + 1 = 33 · 3 + 1 , 1 000 = 999 + 1 = 333 · 3 + 1 и проч.

А теперь подставим эти равенства вместо 10 , 100 и 1000 в равенства, приведенные ранее a = a n · 10 n + a n - 1 · 10 n - 1 + … + a 2 · 10 2 + a 1 · 10 + a 0 .

Так мы пришли к равенству:

a = a n · 10 n + … + a 2 · 100 + a 1 · 10 + a 0 = = a n · 33 . . . . 3 · 3 + 1 + … + a 2 · 33 · 3 + 1 + a 1 · 3 · 3 + 1 + a 0

А теперь применим свойства сложения и свойства умножения натуральных чисел для того, чтобы переписать полученное равенство следующим образом:

a = a n · 33 . . . 3 · 3 + 1 + . . . + + a 2 · 33 · 3 + 1 + a 1 · 3 · 3 + 1 + a 0 = = 3 · 33 . . . 3 · a n + a n + . . . + + 3 · 33 · a 2 + a 2 + 3 · 3 · a 1 + a 1 + a 0 = = 3 · 33 . . . 3 · a n + . . . + + 3 · 33 · a 2 + 3 · 3 · a 1 + + a n + . . . + a 2 + a 1 + a 0 = = 3 · 33 . . . 3 · a n + … + 33 · a 2 + 3 · a 1 + + a n + . . . + a 2 + a 1 + a 0

Выражение a n + . . . + a 2 + a 1 + a 0 - это сумма цифр исходного числа a . Введем для нее новое краткое обозначение А . Получаем: A = a n + . . . + a 2 + a 1 + a 0 .

В этом случае представление числа a = 3 · 33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 + A принимает такой вид, который нам будет удобно использовать для доказательства признака делимости на 3 .

Определение 1

Теперь вспомним следующие свойства делимости:

  • необходимым и достаточным условием для того, чтобы целое число a делилось на целое число
    ​​​​​​ b , является условие, по которому модуль числа a делится на модуль числа b ;
  • если в равенстве a = s + t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Мы заложили основу для того, чтобы провести доказательство признака делимости на 3 . Теперь же сформулируем этот признак в виде теоремы и докажем ее.

Теорема 1

Для того, чтобы утверждать, что целое число a делится на 3 , нам необходимо и достаточно, чтобы сумма цифр, которая образует запись числа a , делилась на 3 .

Доказательство 1

Если взять значение a = 0 , то теорема очевидна.

Если ы возьмем число a , отличное от нуля, то модуль числа a будет натуральным числом. Это позволяет нам записать следующее равенство:

a = 3 · 33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 + A , где A = a n + . . . + a 2 + a 1 + a 0 - сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то
33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 - целое число, тогда по определению делимости произведение 3 · 33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 делится на 3 при любых a 0 , a 1 , … , a n .

Если сумма цифр числа a делится на 3 , то есть, A делится на 3 , то в силу свойства делимости, указанного перед теоремой, a делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и a делится на 3 , тогда в силу того же свойства делимости число
A делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Целые числа могут быть заданы как значение некоторого выражения, которое содержит переменную, при определенном значении этой переменной. Так, при некотором натуральном n значение выражения 4 n + 3 n - 1 является натуральным числом. В этом случае непосредственное деление на 3 не может дать нам ответ на вопрос, делится ли число на 3 . Применение признака делимости на 3 также может быть затруднено. Рассмотрим примеры таких задач и разберем методы их решения.

Для решения таких задач может быть применено несколько подходов. Суть одного из них заключается в следующем:

  • представляем исходное выражение как произведение нескольких множителей;
  • выясняем, может ли хотя бы один из множителей делиться на 3 ;
  • на основе свойства делимости делаем вывод о том, что все произведение делится на 3 .

В ходе решения часто приходится прибегать к использованию формулы бинома Ньютона.

Пример 4

Делится ли значение выражения 4 n + 3 n - 1 на 3 при любом натуральном n ?

Решение

Запишем равенство 4 n + 3 n - 4 = (3 + 1) n + 3 n - 4 . Применим формулу бинома Ньютона бинома Ньютона:

4 n + 3 n - 4 = (3 + 1) n + 3 n - 4 = = (C n 0 · 3 n + C n 1 · 3 n - 1 · 1 + . . . + + C n n - 2 · 3 2 · 1 n - 2 + C n n - 1 · 3 · 1 n - 1 + C n n · 1 n) + + 3 n - 4 = = 3 n + C n 1 · 3 n - 1 · 1 + . . . + C n n - 2 · 3 2 + n · 3 + 1 + + 3 n - 4 = = 3 n + C n 1 · 3 n - 1 · 1 + . . . + C n n - 2 · 3 2 + 6 n - 3

Теперь вынесем 3 за скобки: 3 · 3 n - 1 + C n 1 · 3 n - 2 + . . . + C n n - 2 · 3 + 2 n - 1 . Полученное произведение содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Это позволяет нам утверждать, что полученное произведение и исходное выражение 4 n + 3 n - 1 делится на 3 .

Ответ: Да.

Также мы можем применить метод математической индукции.

Пример 5

Докажите с использованием метода математической индукции, что при любом натуральном
n значение выражения n · n 2 + 5 делится на 3 .

Решение

Найдем значение выражения n · n 2 + 5 при n = 1 : 1 · 1 2 + 5 = 6 . 6 делится на 3 .

Теперь предположим, что значение выражения n · n 2 + 5 при n = k делится на 3 . Фактически, нам придется работать с выражением k · k 2 + 5 , которое, как мы ожидаем, будет делиться на 3 .

Учитывая, что k · k 2 + 5 делится на 3 , покажем, что значение выражения n · n 2 + 5 при n = k + 1 делится на 3 , то есть, покажем, что k + 1 · k + 1 2 + 5 делится на 3 .

Выполним преобразования:

k + 1 · k + 1 2 + 5 = = (k + 1) · (k 2 + 2 k + 6) = = k · (k 2 + 2 k + 6) + k 2 + 2 k + 6 = = k · (k 2 + 5 + 2 k + 1) + k 2 + 2 k + 6 = = k · (k 2 + 5) + k · 2 k + 1 + k 2 + 2 k + 6 = = k · (k 2 + 5) + 3 k 2 + 3 k + 6 = = k · (k 2 + 5) + 3 · k 2 + k + 2

Выражение k · (k 2 + 5) делится на 3 и выражение 3 · k 2 + k + 2 делится на 3 , поэтому их сумма делится на 3 .

Так мы доказали, что значение выражения n · (n 2 + 5) делится на 3 при любом натуральном n .

Теперь разберем подход к доказательству делимости на 3 , которых основан на следующем алгоритме действий:

  • показываем, что значение данного выражения с переменной n при n = 3 · m , n = 3 · m + 1 и n = 3 · m + 2 , где m – произвольное целое число, делится на 3 ;
  • делаем вывод о том, что выражение будет делиться на 3 при любом целом n .

Для того, чтобы не отвлекать внимание от второстепенных деталей, применим данный алгоритм к решению предыдущего примера.

Пример 6

Покажите, что n · (n 2 + 5) делится на 3 при любом натуральном n .

Решение

Предположим, что n = 3 · m . Тогда: n · n 2 + 5 = 3 m · 3 m 2 + 5 = 3 m · 9 m 2 + 5 . Произведение, которое мы получили, содержит множитель 3 , следовательно само произведение делится на 3 .

Предположим, что n = 3 · m + 1 . Тогда:

n · n 2 + 5 = 3 m · 3 m 2 + 5 = (3 m + 1) · 9 m 2 + 6 m + 6 = = 3 m + 1 · 3 · (2 m 2 + 2 m + 2)

Произведение, которое мы получили, делится на 3 .

Предположим, что n = 3 · m + 2 . Тогда:

n · n 2 + 5 = 3 m + 1 · 3 m + 2 2 + 5 = 3 m + 2 · 9 m 2 + 12 m + 9 = = 3 m + 2 · 3 · 3 m 2 + 4 m + 3

Это произведение также делится на 3 .

Ответ: Так мы доказали, что выражение n · n 2 + 5 делится на 3 при любом натуральном n .

Пример 7

Делится ли на 3 значение выражения 10 3 n + 10 2 n + 1 при некотором натуральном n .

Решение

Предположим что n = 1 . Получаем:

10 3 n + 10 2 n + 1 = 10 3 + 10 2 + 1 = 1000 + 100 + 1 = 1104

Предположим, что n = 2 . Получаем:

10 3 n + 10 2 n + 1 = 10 6 + 10 4 + 1 = 1000 000 + 10000 + 1 = 1010001

Так мы можем сделать вывод, что при любом натуральном n мы будем получать числа, которые делятся на 3 . Это значит, что 10 3 n + 10 2 n + 1 при любом натуральном n делится на 3 .

Ответ: Да

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter