Монету бросают 3 раза какая вероятность того. Специальная формула вероятности

Задача 1 . Игральная кость брошена 6 раз. Найти вероятность того, что ровно 3 раза выпадет «шестерка».

Решение. Шестикратное бросание кости можно рассматривать как последовательность независимых испытаний с вероятностью успеха («шестерки»), равной 1/6, и вероятностью неудачи - 5/6. Искомую вероятность вычисляем по формуле .

Задача 2 . Монета бросается 6 раз. Найти вероятность того, что герб выпадет не более, чем 2 раза.

Решение. Искомая вероятность равна сумме вероятностей трех событий, состоящих в том, что герб не выпадет ни разу, либо один раз, либо два раза:

Р(А) = Р 6 (0) + Р 6 (1) + Р 6 (2) =.

Задача 3 . Аудитор обнаруживает финансовые нарушения у проверяемой фирмы с вероятностью 0,9. Найти вероятность того, что среди 4 фирм-нарушителей будет выявлено больше половины.

Решение . Событие состоит в том, что из 4 фирм-нарушителей будет выявлено три или четыре, т.е.

Задача 4 . Монета подбрасывается 3 раза. Найти наиболее вероятное число успехов (выпадений герба).

Решение. Возможными значениями для числа успехов в трех рассматриваемых испытаниях являются m = 0, 1, 2 или 3. Пусть A m - событие, состоящее в том, что при трех подбрасываниях монеты герб появляется m раз. По формуле Бернулли легко найти вероятности событий A m (см. таблицу):

Из этой таблицы видно, что наиболее вероятными значениями являются числа 1 и 2 (их вероятности равны 3/8). Этот же результат можно получить и из теоремы 2. Действительно, n=3, p=1/2, q=1/2. Тогда

, т.е.
.

Задача 5. В результате каждого визита страхового агента договор заключается с вероятностью 0,1. Найти наивероятнейшее число заключенных договоров после 25 визитов.

Решение. Имеем n=10, p=0,1, q=0,9. Неравенство для наиболее вероятного числа успехов принимает вид: 250,1–0,9m*250,1+0,1 или 1,6m*2,6. У этого неравенства только одно целое решение, а именно, m*=2.

Задача 6 . Известно, что процент брака для некоторой детали равен 0,5%. Контролер проверяет 1000 деталей. Какова вероятность обнаружить ровно три бракованные детали? Какова вероятность обнаружить не меньше трех бракованных деталей?

Решение. Имеем 1000 испытаний Бернулли с вероятностью «успеха» р=0,005. Применяя пуассоновское приближение с λ=np=5, получаем

1) P 1000 (3);

2) P 1000 (m3)=1P 1000 (m<3)=11
,

и Р 1000 (3)0,14; Р 1000 (m3)0,875.

Задача 7 . Вероятность покупки при посещении клиентом магазина составляет р=0,75. Найти вероятность того, что при 100 посещениях клиент совершит покупку ровно 80 раз.

Решение . В данном случае n=100, m=80, p=0,75, q=0,25. Находим
, и определяем(x)=0,2036, тогда искомая вероятность равна Р 100 (80)=
.

Задача 8. Страховая компания заключила 40000 договоров. Вероятность страхового случая по каждому из них в течение года составляет 2%. Найти вероятность, что таких случаев будет не более 870.

Решение. По условию задачи n=40000, p=0,02. Находим np=800,
. Для вычисления Р(m£870) воспользуемся интегральной теоремой Муавра-Лапласа:

Р(0и
.

Находим по таблице значений функции Лапласа:

Р(0

Задача 9 . Вероятность появления события в каждом из 400 независимых испытаний равна 0,8. Найти такое положительное число , чтобы с вероятностью 0,99 абсолютная величина отклонения относительной частоты появления события от его вероятности не превышала .

Решение. По условию задачи p=0,8, n=400. Используем следствие из интегральной теоремы Муавра-Лапласа:
. Следовательно,
. По таблице для функции Лапласа определяем
. Отсюда=0,0516.

Задача 10. Курс акции за день может подняться на 1 пункт с вероятностью 50%, опуститься на 1 пункт с вероятностью 30% и остаться неизменным с вероятностью 20%. Найти вероятность того, что за 5 дней торгов курс поднимется на 2 пункта.

Решение. Возможны только следующие два варианта развития событий:

1) курс растет 2 дня, ни разу не падает, не меняется 3 дня;

2) курс растет 3 дня, падает 1 день, не меняется 1 день.

Задачи на подбрасывание монет считаются довольно сложными. И перед тем как решать их, требуется небольшое пояснение. Задумайтесь, любая задача по теории вероятностей в итоге сводится к стандартной формуле:

где p - искомая вероятность, k - число устраивающих нас событий, n - общее число возможных событий.

Большинство задач B6 решаются по этой формуле буквально в одну строчку - достаточно прочитать условие. Но в случае с подбрасыванием монет эта формула бесполезна, поскольку из текста таких задач вообще не понятно, чему равны числа k и n . В этом и состоит вся сложность.

Тем не менее, существует как минимум два принципиально различных метода решения:

  1. Метод перебора комбинаций - стандартный алгоритм. Выписываются все комбинации орлов и решек, после чего выбираются нужные;
  2. Специальная формула вероятности - стандартное определение вероятности, специально переписанное так, чтобы было удобно работать с монетами.

Для решения задачи B6 надо знать оба метода. К сожалению, в школах изучают только первый. Не будем повторять школьных ошибок. Итак, поехали!

Метод перебора комбинаций

Этот метод еще называется «решение напролом». Состоит из трех шагов:

  1. Выписываем все возможные комбинации орлов и решек. Например: ОР, РО, ОО, РР. Число таких комбинаций - это n ;
  2. Среди полученных комбинаций отмечаем те, которые требуются по условию задачи. Считаем отмеченные комбинации - получаем число k ;
  3. Осталось найти вероятность: p = k : n .

К сожалению, этот способ работает лишь для малого количества бросков. Потому что с каждым новым броском число комбинаций удваивается. Например, для 2 монет придется выписать всего 4 комбинации. Для 3 монет их уже 8, а для 4 - 16, и вероятность ошибки приближается к 100%. Взгляните на примеры - и сами все поймете:

Задача. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество.

Итак, монету бросают два раза. Выпишем все возможные комбинации (O - орел, P - решка):

Итого n = 4 варианта. Теперь выпишем те варианты, которые подходят по условию задачи:

Таких вариантов оказалось k = 2. Находим вероятность:

Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу.

Снова выписываем все возможные комбинации орлов и решек:

OOOO OOOP OOPO OOPP OPOO OPOP OPPO OPPP
POOO POOP POPO POPP PPOO PPOP PPPO PPPP

Всего получилось n = 16 вариантов. Вроде, ничего не забыл. Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек. Следовательно, k = 1. Осталось найти вероятность:

Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки? Лично я - не уверен. Поэтому давайте рассмотрим второй способ решения.

Специальная формула вероятности

Итак, в задачах с монетами есть собственная формула вероятности. Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните:

Теорема. Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле:

Где C n k - число сочетаний из n элементов по k , которое считается по формуле:

Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи. Более того, не имеет значения, что именно считать: решки или орлы. Ответ получится один и тот же.

На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться - и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше.

Задача. Монету бросают четыре раза. Найдите вероятность того, что орел выпадет ровно три раза.

По условию задачи, всего бросков было n = 4. Требуемое число орлов: k = 3. Подставляем n и k в формулу:

Задача. Монету бросают три раза. Найдите вероятность того, что решка не выпадет ни разу.

Снова выписываем числа n и k . Поскольку монету бросают 3 раза, n = 3. А поскольку решек быть не должно, k = 0. Осталось подставить числа n и k в формулу:

Напомню, что 0! = 1 по определению. Поэтому C 3 0 = 1.

Задача. В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка.

Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза (тогда решек будет 1), либо 4 (тогда решек вообще не будет). Найдем вероятность каждого из этих событий.

Пусть p 1 - вероятность того, что орел выпадет 3 раза. Тогда n = 4, k = 3. Имеем:

Теперь найдем p 2 - вероятность того, что орел выпадет все 4 раза. В этом случае n = 4, k = 4. Имеем:

Чтобы получить ответ, осталось сложить вероятности p 1 и p 2 . Помните: складывать вероятности можно только для взаимоисключающих событий. Имеем:

p = p 1 + p 2 = 0,25 + 0,0625 = 0,3125

В теории вероятностей существует группа задач, для решения которых достаточно знать классическое определение вероятности и наглядно представлять предлагаемую ситуацию. Такими задачами является большинство задач с подбрасыванием монеты и задачи с бросанием игрального кубика. Напомним классическое определение вероятности.

Вероятность события А (объективная возможность наступления события в числовом выражении) равна отношению числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов: Р(А)=m/n , где:

  • m – число элементарных исходов испытания, благоприятствующих появлению события А;
  • n – общее число всех возможных элементарных исходов испытания.

Число возможных элементарных исходов испытания и число благоприятных исходов в рассматриваемых задачах удобно определять перебором всех возможных вариантов (комбинаций) и непосредственным подсчетом.

Из таблицы видим, что число возможных элементарных исходов n=4. Благоприятные исходы события А = {орел выпадает 1 раз} соответствуют варианту №2 и №3 эксперимента, таких вариантов два m=2.
Находим вероятность события Р(А)=m/n=2/4=0,5

Задача 2 . В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел не выпадет ни разу.

Решение . Поскольку монету бросают дважды, то, как и в задаче 1, число возможных элементарных исходов n=4. Благоприятные исходы события А = {орел не выпадет ни разу} соответствуют варианту №4 эксперимента (см. таблицу в задаче 1). Такой вариант один, значит m=1.
Находим вероятность события Р(А)=m/n=1/4=0,25

Задача 3 . В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно 2 раза.

Решение . Возможные варианты трех бросаний монеты (все возможные комбинации орлов и решек) представим в виде таблицы:

Из таблицы видим, что число возможных элементарных исходов n=8. Благоприятные исходы события А = {орел выпадает 2 раза} соответствуют вариантам №5, 6 и 7 эксперимента. Таких вариантов три, значит m=3.
Находим вероятность события Р(А)=m/n=3/8=0,375

Задача 4 . В случайном эксперименте симметричную монету бросают четыре раза. Найдите вероятность того, что орёл выпадет ровно 3 раза.

Решение . Возможные варианты четырех бросаний монеты (все возможные комбинации орлов и решек) представим в виде таблицы:

№ варианта 1-й бросок 2-й бросок 3-й бросок 4-й бросок № варианта 1-й бросок 2-й бросок 3-й бросок 4-й бросок
1 Орел Орел Орел Орел 9 Решка Орел Решка Орел
2 Орел Решка Решка Решка 10 Орел Решка Орел Решка
3 Решка Орел Решка Решка 11 Орел Решка Решка Орел
4 Решка Решка Орел Решка 12 Орел Орел Орел Решка
5 Решка Решка Решка Орел 13 Решка Орел Орел Орел
6 Орел Орел Решка Решка 14 Орел Решка Орел Орел
7 Решка Орел Орел Решка 15 Орел Орел Решка Орел
8 Решка Решка Орел Орел 16 Решка Решка Решка Решка

Из таблицы видим, что число возможных элементарных исходов n=16. Благоприятные исходы события А = {орел выпадет 3 раза} соответствуют вариантам №12, 13, 14 и 15 эксперимента, значит m=4.
Находим вероятность события Р(А)=m/n=4/16=0,25

Определение вероятности в задачах про игральную кость

Задача 5 . Определите вероятность того, что при бросании игрального кубика (правильной кости) выпадет более 3 очков.

Решение . При бросании игрального кубика (правильной кости) может выпасть любая из шести его граней, т.е. произойти любое из элементарных событий - выпадение от 1 до 6 точек (очков). Значит число возможных элементарных исходов n=6.
Событие А = {выпало более 3 очков} означает, что выпало 4, 5 или 6 точек (очков). Значит число благоприятных исходов m=3.
Вероятность события Р(А)=m/n=3/6=0,5

Задача 6 . Определите вероятность того, что при бросании игрального кубика выпало число очков, не большее 4. Результат округлите до тысячных.

Решение . При бросании игрального кубика может выпасть любая из шести его граней, т.е. произойти любое из элементарных событий - выпадение от 1 до 6 точек (очков). Значит число возможных элементарных исходов n=6.
Событие А = {выпало не более 4 очков} означает, что выпало 4, 3, 2 или 1 точка (очко). Значит число благоприятных исходов m=4.
Вероятность события Р(А)=m/n=4/6=0,6666…≈0,667

Задача 7 . Игральную кость бросают дважды. Найдите вероятность того, что оба раза выпало число, меньшее 4.

Решение . Так как игральную кость (игральный кубик) бросают дважды, то будем рассуждать следующим образом: если на первом кубике выпало одно очко, то на втором может выпасть 1, 2, 3, 4, 5, 6. Получаем пары (1;1), (1;2), (1;3), (1;4), (1;5), (1;6) и так с каждой гранью. Все случаи представим в виде таблицы из 6-ти строк и 6-ти столбцов:

1; 1 2; 1 3; 1 4; 1 5; 1 6; 1
1; 2 2; 2 3; 2 4; 2 5; 2 6; 2
1; 3 2; 3 3; 3 4; 3 5; 3 6; 3
1; 4 2; 4 3; 4 4; 4 5; 4 6; 4
1; 5 2; 5 3; 5 4; 5 5; 5 6; 5
1; 6 2; 6 3; 6 4; 6 5; 6 6; 6


Благоприятные исходы события А = {оба раза выпало число, меньшее 4} (они выделены жирным) подсчитаем и получим m=9.
Находим вероятность события Р(А)=m/n=9/36=0,25

Задача 8 . Игральную кость бросают дважды. Найдите вероятность того, что наибольшее из двух выпавших чисел равно 5. Ответ округлите до тысячных.

Решение . Все возможные исходы двух бросаний игральной кости представим в таблице:

1; 1 2; 1 3; 1 4; 1 5; 1 6; 1
1; 2 2; 2 3; 2 4; 2 5; 2 6; 2
1; 3 2; 3 3; 3 4; 3 5; 3 6; 3
1; 4 2; 4 3; 4 4; 4 5; 4 6; 4
1; 5 2; 5 3; 5 4; 5 5; 5 6; 5
1; 6 2; 6 3; 6 4; 6 5; 6 6; 6

Из таблицы видим, что число возможных элементарных исходов n=6*6=36.
Благоприятные исходы события А = {наибольшее из двух выпавших чисел равно 5} (они выделены жирным) подсчитаем и получим m=8.
Находим вероятность события Р(А)=m/n=8/36=0,2222…≈0,222

Задача 9 . Игральную кость бросают дважды. Найдите вероятность того, что хотя бы раз выпало число, меньшее 4.

Решение . Все возможные исходы двух бросаний игральной кости представим в таблице:

1; 1 2; 1 3; 1 4; 1 5; 1 6; 1
1; 2 2; 2 3; 2 4; 2 5; 2 6; 2
1; 3 2; 3 3; 3 4; 3 5; 3 6; 3
1; 4 2; 4 3; 4 4; 4 5; 4 6; 4
1; 5 2; 5 3; 5 4; 5 5; 5 6; 5
1; 6 2; 6 3; 6 4; 6 5; 6 6; 6

Из таблицы видим, что число возможных элементарных исходов n=6*6=36.
Фраза «хотя бы раз выпало число, меньшее 4» означает «число меньшее 4 выпало один раз или два раза», тогда число благоприятных исходов события А = {хотя бы раз выпало число, меньшее 4} (они выделены жирным) m=27.
Находим вероятность события Р(А)=m/n=27/36=0,75