Фрэнсис Крик - величайший учёный и убеждённый атеист. Френсис крик


Проф. Дулуман Е.К.

Нобелевский лауреат Фрэнсис КРИК и атеизм

(До 50-летия открытия ДНК )

If revealed religions

have revealed anything

it is that they

are usually wrong.

(Если религии Откровения ,

что-то там открывают,

то эти откровения, обыкновенно,

оказываются лживыми )

Френсис Крик

Фрэнсис Крик

В 2003 году мировая научная общественность отметила 50-летие открытие структуры ДНК. Российская Академия наук к этому знаменательному событию посвятила весь шестой выпуск «ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ НАУК» за 2003 год, празднично назвав его: К 50-ЛЕТИЮ ОТКРЫТИЯ СТРУКТУРЫ ДНК.

С обстоятельными аналитическими и информационными статьями выступили ведущие и всемирно известные наши академики: Л.Л. Киселев, "Юбилей самой главной молекулы" ; Е. Д. Свердлов, "Великое открытие: революция, канонизация, догмы и ересь" ; В. Л. Карпов, "ДНК, хроматин, гистоновый код" . «Кликнув» мышкой по названием этих статей, вы получите возможность познакомится с полными текстами их авторов.

Академик Л.Л. Киселев пишет:

За открытие структуры ДНК Уотсону и Крику в 1962 году была присуждена Нобелевская премия.

После прочтения статей в академического вестника я вспомнил прочитанные раньше атеистические статьи и высказывания Фрэнсиса Харри Комптона Крика (Francis Harry Compton Crick) и его биографию под интригующим, если не сказать странным, названием: «What Mad Pursuit », что можно перевести как «Что ищет сумасшедший ». Можно перевести и по-другому, поскольку слово «mad» может означать и «пристрастный», и «самозабвенный», и «влюбленный», и «безумный», а слово «Pursuit» -«преследовать», «убеждать», «пребывать в поисках». Впрочем, при чтении автобиографии Крика создается впечатление, что он употребил слово «mad» в отклик на Библейское обвинение атеиста в безумии: «Рече безумец в сердце своем: Бога - нет» (Псалом 13:1; 52:2). В этом месте английские переводы Библии безумца называют именно словом «mad».

В автобиографии «What Mad Pursuit » есть специальная глава, которую Крик назвал: «How I Got Inclined Towards Atheism» («Почему я склонился к атеизму»). У нас нет возможности пересказать все интересные и неповторимые мысли великого ученого об атеистическом и религиозном мировоззрении. Приведем только три наиболее представительные, по нашему мнению, цитаты это величайшего учёного и убеждённого атеиста..

«Одних знаний истинного возраста земли, о чем убедительно свидетельствуют геологические отложения, окаменелости растений и животных, не позволяют интеллигентному уму верить буквально, подобно религиозным фундаменталистам, во все то, что пишется в Библии. И если некоторые сообщения Библии явно ложны, то на основании чего другие библейские сказания должны приниматься за правду

«Христианские религиозные верования во время их формирования, возможно, отвечали не только воображению верующих, но и уровню знаний той эпохи. Но, как бы это не было прискорбно, последующие научные открытия не только решительно опровергли христианские верования, но и выставили их в неприглядном свете. Что может быть более глупым, чем обосновывать образ жизни современного человека сплошь ошибочными идеями только на основании того, что они, эти идеи, когда-то считались истинными? И что может быть более важным, чем найти свое истинное место во Вселенной, устраняя одно за другим эти порочные остатки более ранних верований? Но все же ясно, что ряд тайн ещё ждут своего научного объяснения. До тех пор, пока они не объяснены, они могут служить прибежищем для всякого рода религиозных суеверий.

Для меня делом первостепенной важности было стремление идентифицировать еще непонятые области знания в биологии, достичь их подлинного научного понимания. Только таким образом можно было подтвердить или опровергнуть религиозные верования ».

* * *

«Поразительная гипотеза состоит в том, что ваши радости и печали, ваши воспоминания и амбиции, ваше чувство собственного «Я» и свобода воли - все это фактически не более чем проявление деятельности огромного комплекса нервных клеток и связанных с ними молекул. Как выразила бы это Алиса из сказок Льюиса Кэрролла, вы просто мешок нейронов ».


«Религии Откровения» - это Иудаизм, Христианство и Ислам, которые считают, что содержание их верования Открыто им Богом в тексте Библии...

(англ. Francis Crick) родился , 8 июня в Нортгемптон , Англия; умер в возрасте 88 лет

Цитаты : 1. Процесс научного исследования глубоко интимен: иногда мы сами не знаем, что мы делаем. 2. Честный человек, вооруженный всем знанием, имеющимся в нашем распоряжении, может только констатировать, что в определенном смысле происхождение жизни на данный момент кажется почти что чудом… 3. …Белок похож на абзац, написанный на языке с двадцатибуквенным алфавитом, конкретная природа белка при этом определяется конкретным порядком букв. За одним тривиальным исключением — этот шрифт никогда не меняется. Животные, растения, микроорганизмы и вирусы — все пользуются одним и тем же набором букв… 4. Одно из важнейших биологических открытий шестидесятых годов заключалось в обнаружении генетического кода, малого словаря (в принципе похожего на азбуку Морзе), который переводит язык генетического материала, состоящий из четырех букв, на язык белка, исполнительный язык, состоящий из двадцати букв. 5. Мы предположили, что микроорганизмы во избежание порчи должны были путешествовать в головной части беспилотного космического корабля, посланного на Землю высокоразвитой цивилизацией, которая зародилась где-нибудь в другом месте несколько миллиардов лет назад… Жизнь зародилась здесь, когда эти организмы попали в первозданный океан и начали размножаться.

Достижения:

Профессиональная, социальная позиция: Фрэнсис Крик английский молекулярный биолог, физик и нейробиолог.
Основной вклад (чем известен): Фрэнсис Крик известен прежде всего своим исследованиями, приведшими к открытию структуры ДНК в 1952 году, а также своими теориями сознания и происхождения жизни.
Вклады: Он наиболее известен как один из двух со-первооткрывателей, вместе с Джеймсом Уотсоном, двойной спирали структуры молекулы ДНК в 1953 году, Он также сыграл важную роль в исследованиях, касающихся выявления генетического кода.
В Кембридже он познакомился с американцем по имени Джеймс Уотсон и вместе со своим коллегой Морисом Уилкинсоном, они пытались выяснить структуру дезоксирибонуклеиновой кислоты (ДНК).
В своих исследованиях они основывались на теории Крика, Уотсоновсой теории фага, рентгенографических исследованиях Морис Уилкинс и Розалинд Франклин и открытия Эрвина Чаргаффа (1950), утверждающего, что ДНК включает равные количества четырех азотистых оснований - аденина, тимина, гуанина и цитозина.
В 1953 году на основе этих различныхе научных теорий было раскрыто строение ДНК, структурированой, как две закрученные, спиральные лестницы: известной впоследствии как модель двойной спирали.
Крик и Уотсон впервые опубликовали одну из своих четырех статей сообщающих об их открытии 25 апреля 1953 года в журнале Природа.
В 1962 году Френсис Крик, Джеймс Д. Уотсон и Морис Уилкинс были совместно удостоены Нобелевской премии по физиологии и медицине «за открытия, касающиеся молекулярной структуры нуклеиновых кислот и их значения для передачи информации в живых организмах».
После открытия двойной спирали, Крик начал работать над проблемой взаимосвязи ДНК с генетическим кодом. Он раскрыл природу генетического кода. Так код определяет соответствие между трех-нуклеотидными последовательностями, называемыми кодонами и аминокислотами. Три азотистых оснований (триплет) кодируют одну аминокислоту. При этом, он раскрыл, механизм синтеза белка. Исходная молекула ДНК разделяется как застежка – молния. Каждая половина молекулы ДНК служит в качестве шаблона, матрицы построения новых комплементарных двойных спиралей.
При этом каждое азотистое ооснование аденин (A), тимин (T), гуанин(G) и цитозин (C) связывается в пару со своим, строго определенным, комплементарным основанием.
Крик широко известен за введение термина «центральная догма», обобщающего идею том, что передача генетической информации в клетках осуществляется посредством одностороннего потока от ДНК, через РНК, к белку.
Позже предметом научного интереса Крика стали две основные нерешенные проблемы биологии. Первая касалась вопроса, как молекулы трансформируются от неживого к живому, и вторая, как мозг влияет на работу сознания. В своей работе «Жизнь как она есть: ее происхождение и природа» (1981), Крик предположил, что жизнь на Земле могла произойти от микроорганизмов, которые были занесены с другой планеты.
Эту теорию он и его коллега Л. Оргел назвали «непосредственной панспермией».
Его теории сознания и происхождения жизни оказали значительное влияние на всех ученых работающих в этой области.
Почётные звания, награды : Нобелевская премия по физиологии и медицине (1962), Международная премия Гайрднер (1962), Королевская медаль(1972), Медаль Копли (1975) Медаль Альберта (Королевское общество искусств) (1987), Oрден заслуг (1991).
Основные труды: «Строение вещества наследственности» (1953), «О молекулах и человеке» (1966), «Жизнь как она есть: ее происхождение и природа» (1981), «Удивительные гипотезы: научный поиск души» (1994).

Жизнь:

Происхождение: Он родился и вырос в Уэстон Фавелле, маленькой деревушке недалеко от английского города Нортгемптон, в котором его отец Крика Гарри Крик (1887-1948) и его дядя основали семейную обувную фабрику. Его матерью была Энни Элизабет Крик (девичья фамилия Уилкинс) (1879-1955).
Образование: Он получил образование в средней школе Нортгемптона, а после 14 лет, в школе Милл- Хилл в Лондоне. Он получил степень бакалавра в области физики в университетском колледже Лондона (UCL), доктора философии в Кембриджском университете, постдоктора в Политехническом институте Бруклина.
Оказали влияние: Эрвин Шредингер
Основные этапы профессиональной деятельности: В 1937 году в возрасте 21, Крик получил степень бакалавра по физике в Университетском колледже Лондона (UCL).
Его работа и дальнейшая учеба в университете были прерваны участием во Второй мировой войне. С 1940 по 1947 он служил в качестве ученого в военно-морском министерстве, где он разрабатывал схемы морских мин.
После службы в армии, в 1947 г. Крик стал аспирантом и Почетным членом колледжа Гая и работал в Кембриджской медицинской лаборатории над использованием рентгеноструктурной дифракции для определения пространственной структуры больших биологических молекул. В это время Крик, под влиянием идей Эрвина Шредингера, изложенных в его книге «Что такое жизнь?» (1944), переключил свой интерес из физики на биологию.
В 1949 Фрэнсис Крик перешел в знаменитую Кавендишскую лабораторию в Кембридже –где начал исследовать молекулярную структуру белков.
Фрэнсису Крику было 35 лет, когда он со своим коллегой Джеймсом Уотсоном начал работать, над раскрытием строения ДНК, генетического кода жизни.
После 1976 г. он работал в Институте Солка в Сан-Диего, где с 1994 по 1995 год он занимал пост президента. В Институте в сотрудничестве с Кристофом Кохом, он изучал нейронные корреляты сознательного визуального опыта, пытаясь понять, как нейронные модели соответствуют сознательному опыту зрения.
Основные этапы личной жизни: С самого раннего возраста, Фрэнсис был увлечен наукой и знаниями, полученными из чтения книг. Он получил образование в гимназии Нортгемптона, а после 14 лет, в школе Милл- Хилл в Лондоне (на стипендию), где он изучал математику, физику и химию с его лучшим другом Джоном Шилстоном.
Впервые Крик женился в 1940 году на Рут Дорин Додд (1913 — 2011). У них родился сын Майкл Фрэнсис Комптон Крик (р. 25 ноября 1940). Он развелся с женой в 1947 году. Позже в 1949 году он женился на Одиллии Спид (1920 — 2007. У них было две дочери Габриель Энн (род. 15 июля 1951) и Жаклин Мари-Тереза (позже Николс) (12 марта 1954 -28 февраля 2011 года). Они оставались вместе до смерти Крика в 2004 году.
Он был кремирован и его пепел был рассеян над Тихим океаном.
Изюминка : Дедушка Фрэнсиса Крика был сапожником и ученым-любителем. Его дядя Уолтер также увлекался наукой и в свои молодые годы Фрэнсис проводил с ним некоторые химические опыты. Первая модель пространственной структуры молекулы ДНК была сконструирована из шариков, кусков проволоки и картона.

Наибольшую известность Крик получил за открытие структуры молекулы ДНК вместе с Джеймсом Уотсоном (James Watson) в 1953-м. Он, Уотсон и Морис Уилкинс (Maurice Wilkins) разделили в 1962-м Нобелевскую премию по физиологии и медицине "за открытия, связанные с молекулярной структурой нуклеиновых кислот и их значением для передачи информации в живой материи".


Фрэнсис Гарри Комптон Крик, первый ребенок Гарри Крика и Энни Элизабет Уилкинс, родился 8 июня 1916-го, в небольшом поселении недалеко от Нортгемптоншира, Англия (Northamptonshire, England). Его дедушка, натуралист-любитель Уолтер Дробридж Крик (Walter Drawbridge Crick), составлял отчеты об исследовании местной фораминиферы и вел переписку с Чарльзом Дарвином (Charles Darwin). В честь его деда даже были названы два представителя класса брюхоногих.

В раннем возрасте Фрэнсиса заинтересовала наука, и он активно черпал знания из книг. Родители водили его в церковь, но ближе к 12 годам мальчик объявил, что отказывается от религиозной веры, чтобы заняться поиском ответов на свои вопросы с научной точки зрения. Позднее он с долей иронии сказал, что взрослые могут хоть сколько обсуждать вопросы христианства, но детей от всего этого надо держать подальше.



В 21 год Крик заработал степень бакалавра в области физики в Университетском колледже Лондона (University College London). Во время Второй мировой он попал в Научно-исследовательскую лабораторию Адмиралтейства, где разрабатывал магнитные и акустические мины и сыграл важную роль в создании новой мины, оказавшейся эффективной против немецких тральщиков.

В 1947-м Крик начал изучать биологию, присоединившись к потоку "ученых-мигрантов", оставляющих свои исследования физики в пользу биологии. Ему пришлось переключиться с "элегантности и глубинной простоты" физики на "сложные химические процессы, развивавшиеся вследствие естественного отбора на протяжении миллиардов лет". Подчеркивая серьезность перехода из одной области в другую, Крик заявил, что "практически родился заново".

Большую часть времени из двух последующих лет работы Фрэнсис уделял изучению физических свойств цитоплазмы в кембриджской Стрейнджуэйской лаборатории (Strangeways Laboratory), возглавляемой Онор Бриджит Фелл (Honor Bridget Fell), пока не начал сотрудничество с Максом Перутцем (Max Perutz) и Джоном Кендрю (John Kendrew) в Кавендишской лаборатории. В конце 1951-го Крик сработался с Джеймсом Уотсоном, с которым в 1953-м опубликовал совместно разработанную модель для спиральной структуры ДНК.

К открытию структуры дезоксирибонуклеиновой кислоты также был подключен Морис Уилкинс . Он показал Фрэнсису и Джеймсу рентгеновский снимок молекулы ДНК, который сделала его сотрудница Розалинд Франклин (Rosalind Franklin), и после этого ученым удалось объяснить механизмы копирования ДНК. В молекулярной биологии Крик ввел термин "Центральная догма", обобщающий правило реализации генетической информации (ДНК → РНК → белок).

Оставшуюся часть своей карьеры Крик занимал должность профессора Института биологических исследований Дж. Солка в Ла-Хойя, штат Калифорния (La Jolla, California). Его функции ограничивались только научно-исследовательской работой. Более поздние исследования Фрэнсиса были сосредоточены на теоретической нейробиологии и связаны с его желанием продвигать изучение человеческого сознания.


Фрэнсис был дважды женат. У него было трое детей и шестеро внуков. Он умер от рака толстой кишки, случилось это 28 июля 2004-го.


Относясь особенно критично к христианству, Крик как-то сказал: "Я не уважаю христианские верования. Я думаю, они просто нелепы. Если бы мы могли избавиться от них, нам бы было гораздо проще приступить к решению серьезной проблемы определения того, что представляет из себя наш мир".

Двойной спирали ДНК 50 лет!

В субботу 28 февраля 1953 г. двое молодых ученых, Дж.Уотсон и Ф.Крик, в небольшой закусочной Eagle в Кембридже объявили толпе пришедших на ленч людей, что они открыли секрет жизни. Много лет спустя Одиль, жена Ф.Крика, сказала, что она, конечно, не поверила ему: приходя домой, он часто заявлял что-нибудь в этом роде, но потом оказывалось, что это ошибка. На этот раз ошибки не было, и с этого заявления началась революция в биологии, которая продолжается и по сей день.

25 апреля 1953 г. в журнале Nature появились сразу три статьи по структуре нуклеиновых кислот. В одной из них, написанной Дж.Уотсоном и Ф.Криком, была предложена структура молекулы ДНК в виде двойной спирали. В двух других, написанных М.Вилкинсом, А.Стоксом, Г.Вилсоном, Р.Франклин и Р.Гослингом, были приведены экспериментальные данные, подтверждающие спиральную структуру молекул ДНК. История открытия двойной спирали ДНК напоминает приключенческий роман и заслуживает хотя бы краткого изложения.

Важнейшие представления о химической природе генов и матричном принципе их воспроизводства были впервые четко сформулированы в 1927 г. Н.К. Кольцовым (1872–1940). Его ученик Н.В. Тимофеев-Ресовский (1900–1981) воспринял эти идеи и развил их как принцип конвариантной редупликации генетического материала. Немецкий физик Макс Дельбрюк (1906–1981; Нобелевская премия 1969 г.), работавший в середине 1930-х гг. в Химическом институте кайзера Вильгельма в Берлине, под влиянием Тимофеева-Ресовского заинтересовался биологией настолько, что бросил физику и стал биологом.

В течение долгого времени, в полном соответствии с определением жизни, данным Энгельсом, биологи считали, что наследственным веществом являются какие-то особые белки. О том, что нуклеиновые кислоты могут иметь к генам какое-то отношение, никто и не думал – слишком уж они казались простыми. Так продолжалось до 1944 г., когда было сделано открытие, коренным образом изменившее все дальнейшее развитие биологии.

В этом году была опубликована статья Освальда Эйвери, Колина Маклеода и Маклина Маккарти о том, что у пневмококков наследуемые свойства передаются от одних бактерий другим с помощью чистой ДНК, т.е. именно ДНК является веществом наследственности. Затем Маккарти и Эйвери показали, что обработка ДНК расщепляющим ее ферментом (ДНКазой) приводит к потере ею свойств гена. До сих пор непонятно, почему это открытие осталось не отмеченным Нобелевской премией.

Незадолго до того, в 1940 г., Л.Полинг (1901–1994; Нобелевские премии 1954 и 1962 гг.) и М.Дельбрюк разработали концепцию молекулярной комплементарности в реакциях антиген-антитело. В те же годы Полинг и Р.Кори показали, что полипептидные цепи могут образовывать спиральные структуры, а несколько позже, в 1951 г., Полинг разработал теорию, позволявшую предсказывать виды рентгенограмм для различных спиральных структур.

После открытия Эйвери с соавторами, несмотря на то, что сторонников теории белковых генов оно не убедило, стало ясно, что необходимо определить структуру ДНК. Среди понявших значение ДНК для биологии началась гонка за результатами, сопровождавшаяся жесткой конкуренцией.

Рентгеновская установка, применявшаяся в 1940-х гг. для изучения кристаллической структуры аминокислот и пептидов

В 1947–1950 гг. Э.Чаргафф на основании многочисленных экспериментов установил правило соответствия между нуклеотидами в ДНК: количества пуриновых и пиримидиновых оснований одинаковы, причем количество адениновых оснований равно количеству тиминовых, а количество гуаниновых оснований – количеству цитозиновых.

Первые структурные работы (С.Ферберг, 1949, 1952) показали, что ДНК имеет спиральную структуру. Имея огромный опыт определения структуры белков по рентгенограммам, Полинг без сомнения мог бы быстро решить проблему структуры ДНК, будь у него сколько-нибудь приличные рентгенограммы. Однако их не было, а по тем, что ему удалось получить, не удавалось сделать однозначный выбор в пользу одной из возможных структур. В результате, торопясь опубликовать результат, Полинг выбрал неверный вариант: в статье, опубликованной в начале 1953 г., он предложил структуру в виде трехнитчатой спирали, в которой фосфатные остатки образуют жесткую сердцевину, а азотистые основания расположены на периферии.

Много лет спустя, вспоминая историю открытия структуры ДНК, Уотсон заметил, что «Лайнус [Полинг] не заслуживал того, чтобы угадать правильное решение. Он не читал статей и ни с кем не разговаривал. Более того, он даже забыл собственную статью с Дельбрюком, в которой говорится о комплементарности репликации генов. Он думал, что сможет определить структуру только потому, что такой умный».

Когда Уотсон и Крик начали работу над структурой ДНК, уже многое было известно. Оставалось получить надежные рентгеноструктурные данные и интерпретировать их на основании уже имевшихся тогда сведений. Как все это происходило, хорошо описано в известной книге Дж.Уотсона «Двойная спираль», хотя многие факты в ней изложены весьма субъективно.

Дж.Уотсон и Ф.Крик на пороге великого открытия

Конечно, для того, чтобы построить модель двойной спирали, нужны были обширные знания и интуиция. Но не будь совпадения нескольких случайностей, модель могла появиться несколькими месяцами позже, а ее авторами могли быть другие ученые. Вот несколько примеров.

Розалинда Франклин (1920–1958), работавшая с М.Вилкинсом (Нобелевская премия 1962 г.) в Кингс-колледже (Лондон), получила высочайшего качества рентгенограммы ДНК. Но работа эта ее интересовала мало, она считала ее рутинной и не спешила делать выводы. Этому способствовали ее плохие отношения с Вилкинсом.

В самом начале 1953 г. Вилкинс без ведома Р.Франклин показал Уотсону ее рентгенограммы. Кроме того, в феврале того же года Макс Перутц показал Уотсону и Крику годовой отчет Совета по медицинским исследованиям с обзором работ всех ведущих сотрудников, включая Р.Франклин. Этого оказалось достаточно, чтобы Ф.Крик и Дж.Уотсон смогли понять, как должна быть устроена молекула ДНК.

Рентгенограмма ДНК, полученная Р.Франклин

В статье Вилкинса с соавторами, опубликованной в том же номере Nature , что и статья Уотсона и Крика, показано, что, судя по рентгенограммам, структура ДНК из разных источников примерно одинакова и представляет собой спираль, у которой азотистые основания расположены внутри, а фосфатные остатки снаружи.

Статья Р.Франклин (с ее студентом Р.Гослингом) была написана в феврале 1953 г. Уже в начальном варианте статьи она описала структуру ДНК в виде двух коаксиальных и сдвинутых друг относительно друга вдоль оси спиралей с азотистыми основаниями внутри и фосфатами снаружи. По ее данным, шаг спирали ДНК в форме В (т.е. при относительной влажности >70%) составлял 3,4 нм, и на один виток приходилось 10 нуклеотидов. В отличие от Уотсона и Крика, Франклин не строила моделей. Для нее ДНК была не более интересным объектом исследования, чем каменный уголь и углерод, которыми она занималась во Франции до приезда в Кингс-колледж.

Узнав о модели Уотсона–Крика, она от руки дописала в окончательном варианте статьи: «Таким образом, наши общие представления не противоречат модели Уотсона и Крика, приведенной в предыдущей статье». Что и не удивительно, т.к. эта модель была основана на ее экспериментальных данных. Но ни Уотсон, ни Крик, несмотря на самые дружеские отношения с Р.Франклин, никогда не говорили ей того, что спустя годы после ее смерти много раз повторяли публично, – что без ее данных они никогда не смогли бы построить свою модель.

Р.Франклин (крайняя слева) на встрече с коллегами в Париже

Р.Франклин умерла от рака в 1958 г. Многие считают, что, доживи она до 1962 г., Нобелевскому комитету пришлось бы нарушить свои строгие правила и вручить премию не трем, а четырем ученым. В знак признания заслуг ее и Вилкинса, одно из зданий в Кингс-колледже назвали «Франклин–Вилкинс», навсегда соединив имена людей, которые друг с другом почти не разговаривали.

При знакомстве со статьей Уотсона и Крика (она приведена ниже) удивляют ее малый объем и лапидарный стиль. Авторы прекрасно понимали значение своего открытия и, тем не менее, ограничились лишь описанием модели и кратким указанием, что «из постулированного … специфического образования пар сразу же следует возможный механизм копирования генетического материала». Сама модель взята как будто «с потолка» – нет никаких указаний на то, как она была получена. Не приведены ее структурные характеристики, за исключением шага и числа нуклеотидов на шаг спирали. Образование пар также описано нечетко, т.к. в то время использовались две системы нумерации атомов в пиримидинах. Статья иллюстрирована лишь одним рисунком, сделанным женой Ф.Крика. Однако для обычных биологов перегруженные кристаллографическими данными статьи Вилкинса и Франклин были трудны для восприятия, а статью Уотсона и Крика поняли все.

Позже и Уотсон, и Крик признавали, что просто боялись в первой же статье излагать все детали. Это было сделано во второй статье, озаглавленной «Генетические следствия из структуры ДНК» и напечатанной в Nature 30 мая того же года. В ней приведены обоснования модели, все размеры и детали структуры ДНК, схемы образования цепей и спаривания оснований, обсуждены различные следствия для генетики. Характер и тон изложения говорят о том, что авторы вполне уверены в своей правоте и важности своего открытия. Правда, пару Г–Ц они соединили только двумя водородными связями, но уже через год в методической статье указали, что возможны три связи. Вскоре и Полинг подтвердил это расчетами.

Открытие Уотсона и Крика показало, что генетическая информация записана в ДНК четырехбуквенным алфавитом. Но потребовалось еще 20 лет на то, чтобы научиться ее читать. Сразу же встал вопрос о том, каким должен быть генетический код. Ответ на него в 1954 г. предложил физик-теоретик Г.А. Гамов*: информация в ДНК кодируется триплетами нуклеотидов – кодонами. Это было подтверждено экспериментально в 1961 г. Ф.Криком и С.Бреннером. Затем в течение 3–4 лет в работах М.Ниренберга (Нобелевская премия 1965 г.), С.Очоа (Нобелевская премия 1959 г.), Х.Кораны (Нобелевская премия 1965 г.) и др. было определено соответствие между кодонами и аминокислотами.

В середине 1970-х гг. Ф.Сэнгер (р. 1918; Нобелевские премии 1958 и 1980 гг.), также работавший в Кембридже, разработал метод определения последовательностей нуклеотидов в ДНК. Сэнгер использовал его для определения последовательности 5386 оснований, составляющих геном бактериофага jХ174. Однако геном этого фага – редкое исключение: он представляет собой одноцепочечную ДНК.
Настоящая эра геномов началась в мае 1995 г., когда Дж.К. Вентер объявил о расшифровке первого генома одноклеточного организма – бактерии Haemophilus influenzae . Сейчас расшифрованы геномы около 100 различных организмов.

Еще недавно ученые думали, что всё в клетке определяется последовательностью оснований в ДНК, однако жизнь, по-видимому, гораздо сложнее.
Теперь хорошо известно, что ДНК нередко имеет форму, отличную от двойной спирали Уотсона–Крика. Более 20 лет назад в лабораторных экспериментах была обнаружена так называемая Z-спиральная структура ДНК. Это тоже двойная спираль, но закрученная в другую сторону по сравнению с классической структурой. До недавнего времени считалось, что Z-ДНК не имеет отношения к живым организмам, но недавно группа исследователей из Национальных институтов сердца, легких и крови (США) обнаружила, что один из генов иммунной системы активируется только тогда, когда часть его регуляторной последовательности переходит в Z-форму. Теперь предполагается, что временное образование Z-формы может быть необходимым звеном в регуляции экспресии многих генов. Обнаружено, что в некоторых случаях вирусные белки связываются с Z-ДНК и приводят к повреждению клеток.

Кроме спиральных структур ДНК может образовывать хорошо известные скрученные кольца у прокариот и некоторых вирусов.

В прошлом году С.Найдл из Института исследований рака (Лондон) обнаружил, что нерегулярные концы хромосом – теломеры, представляющие собой одиночные цепи ДНК, – могут складываться в очень регулярные структуры, напоминающие пропеллер). Сходные структуры были обнаружены и в других участках хромосом и получили название G-квадруплексов, поскольку образуются участками ДНК, богатыми гуанином.

По-видимому, такие структуры способствуют стабилизации участков ДНК, на которых они образуются. Один из G-квадруплексов был обнаружен непосредственно рядом с геном c-MYC , активация которого вызывает рак. В этом случае он может предотвращать связывание с ДНК белков – активаторов гена, и исследователи уже начали поиск препаратов, стабилизирующих структуру G-квадруплексов, в надежде, что они помогут в борьбе с раком.

В последние годы была обнаружена не только способность молекул ДНК к формированию структур, отличных от классической двойной спирали. К удивлению ученых, в ядре клетки молекулы ДНК находятся в непрерывном движении, как бы «танцуют».

Давно известно, что ДНК образует комплексы с белками-гистонами в ядре с протамином в сперматозоидах. Однако эти комплексы считались прочными и статичными. С помощью современной видеотехники удалось заснять динамику этих комплексов в реальном времени. Оказалось, что молекулы ДНК постоянно образуют мимолетные связи друг с другом и с разнообразными белками, которые, как мухи, вьются вокруг ДНК. Некоторые белки движутся с такой скоростью, что от одной стороны ядра до другой проходят за 5 с. Даже гистон Н1, наиболее прочно связанный с молекулой ДНК, каждую минуту диссоциирует и снова связывается с ней. Это непостоянство связей помогает клетке регулировать активность своих генов – ДНК постоянно проверяет наличие в своем окружении факторов транскрипции и других регуляторных белков.

Ядро, которое считалось довольно статическим образованием – хранилищем генетической информации, – на самом деле живет бурной жизнью, и от того, какова хореография его компонентов, во многом зависит благополучие клетки. Некоторые болезни человека могут быть вызваны нарушениями координации этих молекулярных танцев.

Очевидно, что при такой организации жизни ядра его разные участки неравноценны – наиболее активные «танцоры» должны быть ближе к центру, а наименее активные – к стенкам. Так оно и оказалось. Например, у человека хромосома 18, в которой всего несколько активных генов, всегда находится вблизи границы ядра, а набитая активными генами хромосома 19 – всегда вблизи его центра. Более того, движение хроматина и хромосом и даже просто взаимное расположение хромосом, по-видимому, влияет на активность их генов. Так, близкое расположение хромосом 12, 14 и 15 в ядрах клеток лимфомы мыши считают фактором, способствующим превращению клетки в раковую.

Прошедшие полвека в биологии стали эрой ДНК – в 1960-х гг. расшифрован генетический код, в 1970-х гг. получены рекомбинантные ДНК и разработаны методы секвенирования, в 1980-х гг. разработана полимеразная цепная реакция (ПЦР), в 1990 г. начат проект «Геном человека». Один из друзей и коллег Уотсона, У.Гилберт, считает, что традиционная молекулярная биология умерла – теперь все можно выяснить, изучая геномы.

Ф.Крик среди сотрудников лаборатории молекулярной биологии в Кембридже

Сейчас, просматривая статьи Уотсона и Крика 50-летней давности, удивляешься, как много из предположений оказались верными или близкими к истине – ведь у них не было почти никаких экспериментальных данных. Что касается самих авторов, пятидесятилетие открытия структуры ДНК оба ученых встречают, активно работая теперь уже в разных областях биологии. Дж.Уотсон был одним из инициаторов проекта «Геном человека» и продолжает работать в области молекулярной биологии, а Ф.Крик в начале 2003 г. опубликовал статью о природе сознания.

Дж.Д. Уотсон,
Ф.Г.К. Крик,
отдел по изучению молекулярной структуры биологических систем Совета по медицинским исследованиям, Кавендишская лаборатория, Кембридж. 25 апреля, 1953 г.

Молекулярная структура нуклеиновых кислот

Мы хотим предложить модель структуры соли дезоксирибонуклеиновой кислоты (ДНК). Эта структура обладает новыми свойствами, представляющими интерес для биологии.
Структура нуклеиновой кислоты уже предложена Полингом и Кори. Они любезно позволили нам ознакомиться с рукописью их статьи до публикации. Их модель состоит из трех переплетенных цепей с фосфатами, расположенными вблизи оси спирали, и азотистыми основаниями на периферии. По нашему мнению, такая структура неудовлетворительна по двум причинам. Во-первых, мы считаем, что исследуемый материал, дающий рефлексы рентгеновских лучей, является солью, а не свободной кислотой. Без кислотных атомов водорода неясно, какие силы могут поддерживать целостность такой структуры, особенно с учетом того, что отрицательно заряженные фосфатные группы вблизи ее оси будут взаимно отталкиваться. Во-вторых, некоторые из ван-дер-ваальсовых расстояний оказываются слишком малыми.
Еще одна трехцепочечная структура предложена Фрейзером (в печати). В его модели фосфаты находятся снаружи, а азотистые основания, соединенные между собой водородными связями, – внутри спирали. В статье эта структура определена очень плохо и по этой причине мы не станем ее комментировать.
Мы хотим предложить радикально отличающуюся от этих структуру соли дезоксирибонуклеиновой кислоты. Эта структура состоит из двух спиральных цепей, завитых вокруг общей оси. Мы исходили из обычных предположений, а именно, что каждая цепь образована остатками b-D-дезоксирибофуранозными остатками, соединенными 3",5"-связями. Эти цепи (но не их основания) соединены связями (диадами), перпендикулярными к оси спирали. Обе цепи образуют правую спираль, но, благодаря диадам, имеют противоположные направления. Каждая цепь слегка напоминает модель № 1 Ферберга тем, что основания расположены внутри спирали, а фосфаты снаружи. Конфигурация сахара и атомов вблизи него близка к «стандартной конфигурации» Ферберга, в которой сахар расположен приблизительно перпендикулярно к связанному с ним основанию. Остатки на каждой цепи расположены с шагом 3,4 А по направлению z . Мы предположили, что угол между соседними остатками составляет 36 о, так что эта структура повторяется через каждые 10 остатков, т.е. через 34 А. Расстояние от оси до атома фосфора составляет 10 А. Поскольку фосфаты расположены снаружи, они легко доступны для катионов.
Вся структура открыта и содержит довольно много воды. При уменьшении содержания воды можно ожидать, что основания несколько наклонятся, и вся структура станет более компактной.
Новым свойством структуры является способ, которым цепи удерживаются друг возле друга за счет пуриновых и пиримидиновых оснований. Плоскости оснований перпендикулярны оси спирали. Они попарно соединены между собой, причем одно основание на первой цепи соединено водородной связью с одним основанием на второй цепи таким образом, что эти основания расположены бок о бок друг с другом и имеют одну и ту же z -координату. Для того, чтобы образовалась связь, одно основание должно быть пуриновым, а другое пиримидиновым. Водородные связи образуются между позицией 1 пурина и позицией 1 пиримидина и между позицией 6 пурина и позицией 6 пиримидина.
Предполагается, что основания входят в эту структуру только в наиболее вероятной таутомерной форме (т.е. в кето-, а не в энольной форме). Обнаружено, что только специфические пары оснований могут образовывать связи друг с другом. Эти пары таковы: аденин (пурин) – тимин (пиримидин) и гуанин (пурин) – цитозин (пиримидин).
Другими словами, если аденин является одним из членов пары на любой цепи, то в соответствии с этим предположением другим членом пары должен быть тимин. То же относится к гуанину и цитозину. Последовательность оснований на одной цепи, по-видимому, ничем не ограничена. Однако, поскольку могут образовываться только определенные пары оснований, то при заданной последовательности оснований одной цепи последовательность оснований другой цепи определяется автоматически.
Экспериментально обнаружено, что в ДНК отношения количества аденинов к количеству тиминов и количества гуанинов к количеству цитозинов всегда близко к единице.
Вероятно, невозможно построить такую структуру с рибозой вместо дезоксирибозы, т.к. дополнительный атом кислорода делает ван-дер-ваальсово расстояние слишком малым.
Опубликованные до настоящего времени рентгеноструктурные данные по дезоксирибонуклеиновой кислоте недостаточны для строгой проверки нашей модели. Насколько мы можем судить, она приблизительно соответствует экспериментальным данным, но ее нельзя считать доказанной, пока не будет проведено ее сопоставление с более точными экспериментальными данными. Некоторые из них приведены в следующей статье. Нам не были известны детали представленных в ней результатов, когда мы придумывали нашу структуру, которая основывается главным образом, хотя и не только, на опубликованных экспериментальных данных и стереохимических соображениях.
Следует заметить, что из постулированного нами специфического образования пар сразу же следует возможный механизм копирования генетического материала.
Все детали структуры, включая условия, необходимые для ее построения, и наборы координат атомов будут приведены в последующих публикациях.
Мы очень признательны д-ру Джерри Донахью за постоянные советы и критику, особенно относительно межатомных расстояний. Нас также стимулировало общее представление о неопубликованных экспериментальных данных и идеях д-ра М.Г.Ф. Вилкинса и д-ра Р.Э. Франклин и их сотрудников в Кингс-колледже в Лондоне. Один из нас (Дж.Д.У.) получал стипендию Национального фонда детского паралича.

* Георгий Антонович Гамов (1904–1968, эмигрировал в США в 1933 г.) – один из крупнейших ученых XX в. Он автор теории тета-распада и туннельного эффекта в квантовой механике; жидко-капельной модели атомного ядра – основы теорий ядерного распада и термоядерных реакций; теории внутренней структуры звезд, показавшей, что источником солнечной энергии являются термоядерные реакции; теории «Большого взрыва» в эволюции Вселенной; теории реликтового излучения в космологии. Хорошо известны его научно-популярные книги, такие как серия книг о мистере Томпкинсе («Мистер Томпкинс в Стране чудес», «Мистер Томпкинс внутри себя» и др.), «Раз, два, три… бесконечность», «Планета под названием Земля» и др.

, Физиолог , Медик

Френсис Харри Комптон Крик - английский специалист в области молекулярной биологии и генетик. Нобелевская премия по физиологии и медицине (1962 год, совместно с Джеймсом Дьюи Уотсоном и Морисом Уилкинсоном).

Френсис Крик родился 8 июня 1916 года, Нортхепмтон, Великобритания, в семье преуспевающего обувного фабриканта. После того как семья перебралась в Лондон, обучался в школе Милл-Хилл, где проявились его способности к физике, химии и математике. В 1937 году по окончании университетского Оксфордского колледжа Крик получил степень бакалавра естественных наук, защитив дипломную работу - вязкость воды при высоких температурах.

Каждый раз, когда я пишу работу о происхождении жизни, я решаю, что никогда не буду писать еще одну...

Крик Френсис Харри Комптон

В 1939 году, уже во время Второй мировой войны, Френсис Крик начал работать в научно-исследовательской лаборатории Военно-морского министерства, занимаясь глубоководными минами. По окончании войны, продолжая работу в этом ведомстве, познакомился с книгой видного австрийского ученого Эрвина Шредингера «Что такое жизнь? Физические аспекты живой клетки» (1944), в которой пространственно-временные события, происходящие в живом организме, объяснялись с позиции физики и химии. Идеи, изложенные в книге, настолько повлияли на Крика, что он, намереваясь заняться физикой частиц, переключился на биологию.

Получив стипендию Совета по медицинским исследованиям, Крик в 1947 году начал работать в Стрэнджвейской лаборатории в Кембридже, где он изучал биологию, органическую химию и методы рентгеновской дифракции, используемые для определения пространственной структуры молекул. Его познания в биологии значительно расширились после перехода в 1949 в знаменитую Кавендишскую лабораторию в Кембридже – один из мировых центров молекулярной биологии, где под руководством видного биохимика Макса Фердинанда Перуца Фрэнсис Крик исследовал молекулярную структуру белков. Он пытался найти химическую основу генетики, которая, как он предполагал, могла быть заложена в дезоксирибонуклеиновой кислоте (ДНК).

Процесс научного исследования глубоко интимен: иногда мы сами не знаем, что мы делаем.

Крик Френсис Харри Комптон

В этот же период одновременно с Криком в той же области работали и другие ученые. В 1950 американский биолог Эрвин Чаргафф из Колумбийского университета пришел к выводу, что ДНК включает равные количества четырех азотистых оснований - аденина, тимина, гуанина и цитозина. Английские коллеги Крика М. Уилкинс и Р. Франклин из Кингс-колледжа Лондонского университета провели рентгеновские дифракционные исследования молекул ДНК.

В 1951 году Ф. Крик начал совместные исследования с молодым американским биологом Дж. Уотсоном в Кавендишской лаборатории. Основываясь на ранних исследованиях Чаргаффа, Уилкинса и Франклин, Крик и Уотсон, разрабатывая в течение двух лет пространственную структуру молекулы ДНК, сконструировали ее модель из шариков, кусков проволоки и картона. Согласно их модели ДНК

В нуклеотидной последовательности ДНК записана (кодирована) генетическая информация о всех признаках вида и особенностях особи (индивидуума) - ее генотип. ДНК регулирует биосинтез компонентов клеток и тканей, определяет деятельность организма в течение всей его жизни. представляет собой двойную спираль, состоящую из двух цепей моносахарида и фосфата, соединенных парами оснований внутри спирали, причем аденин соединяется с тимином, а гуанин – с цитозином, а основания друг с другом – водородными связями. Модель Уотсона–Крика позволила другим исследователям отчетливо представить процесс синтеза ДНК. Две цепи молекулы разделяются в местах водородных связей наподобие открытия застежки-молнии, после чего на каждой половине прежней молекулы ДНК происходит синтез новой. Последовательность оснований действует как матрица или образец для новой молекулы.

В 1953 ujle создание модели ДНК было ими завершено, и Фрэнсис Крик был удостоен степени доктора философии в Кембридже, защитив диссертацию, посвященную рентгеновскому дифракционному анализу структуры белка. В 1954 году он занимался расшифровкой генетического кода. Будучи изначально теоретиком, Крик начал совместно с С. Бреннером изучение генетических мутаций в бактериофагах - вирусах, инфицирующих бактериальные клетки.

Я могу назвать три области науки, в которых наблюдался очень быстрый прогресс. Прежде всего, это молекулярная биология и геология, которые получили взрывоподобное развитие за последние 15–20 лет. Третья область - астрономия, в которой наиболее важным событием было создание радиотелескопов. Именно с их помощью удалось открыть многие непредвиденные и важные явления во Вселенной, такие, как пульсары, квазары и «черные дыры».

Крик Френсис Харри Комптон

К 1961 году были открыты три типа рибонуклеиновой кислоты (РНК): информационная, рибосомальная и транспортная. Крик и его коллеги предложили способ считывания генетического кода. В соответствии с теорией Крика информационная РНК получает генетическую информацию с ДНК в ядре клетки и переносит ее к рибосомам - местам синтеза белков в цитоплазме клетки. Транспортная РНК переносит в рибосомы аминокислоты. Информационная и рибосомная РНК, взаимодействуя друг с другом, обеспечивают соединение аминокислот для образования молекул белка в правильной последовательности. Генетический код составляют триплеты азотистых оснований ДНК и РНК для каждой из 20 аминокислот. Гены состоят из многочисленных основных триплетов, которые Крик назвал кодонами, они одинаковы у различных видов.

В 1962 году Крик, Уилкинс и Уотсон были удостоены Нобелевской премии «за открытия, касающиеся молекулярной структуры нуклеиновых кислот и их значения для передачи информации в живых системах». В год получения Нобелевской премии Крик стал заведующим биологической лаборатории Кембриджского университета и иностранным членом Совета Солковского института в Сан-Диего (штат Калифорния). В 1977 году, перебравшись в Сан-Диего, Фрэнсис Крик обратился к исследования в области нейробиологии, в частности, механизмов зрения и сновидений.

В своей книге «Жизнь как она есть: ее происхождение и природа» (1981) ученый отмечал удивительное сходство всех форм жизни. Ссылаясь на открытия в молекулярной биологии, палеонтологии и космологии, он предположил, что жизнь на Земле могла произойти от микроорганизмов, которые были рассеяны по всему пространству с другой планеты. Эту теорию он и его коллега Л. Оргел назвали «непосредственной панспермией».

Крик Френсис прожил долгую жизнь, он скончался 30 июля 2004 года, в Сан-Диего, США, в возрасте 88 лет.

Еще при жизни Крик был удостоен многочисленных премий и наград (премии Ш. Л. Майера Французской академии наук, 1961 год; научной премии Американского исследовательского общества, 1962; Королевской медали, 1972; медали Джона Синглтона Копли Королевского общества, 1976).

Фрэнсис Крик - цитаты

Каждый раз, когда я пишу работу о происхождении жизни, я решаю, что никогда не буду писать еще одну...

Процесс научного исследования глубоко интимен: иногда мы сами не знаем, что мы делаем.

Я могу назвать три области науки, в которых наблюдался очень быстрый прогресс. Прежде всего, это молекулярная биология и геология, которые получили взрывоподобное развитие за последние 15–20 лет. Третья область - астрономия, в которой наиболее важным событием было создание радиотелескопов. Именно с их помощью удалось открыть многие непредвиденные и важные явления во Вселенной, такие, как пульсары, квазары и «черные дыры».